"小说下载尽在书本网 www.bookben.cn --- 手机访问: m.bookben.cn 附:【本作品来自互联网,本人不做任何负责】内容版权归作者所有 =================" 爱因斯坦 简 介   提到相对论,人们马上就会联想起一个伟大的名字:阿尔伯特·爱因斯坦。曾任英国皇家学会会长的汤姆孙1919年说:爱因斯坦的理论是“人类思想史中最伟大的成就之一”,“它不是发现一个外围的岛屿,而是发现整个科学新思想的大陆。”物理学家狄拉克认为爱因斯坦的引力理论“大概是(人类)已经作出的最伟大的科学发现”。说这些话的时候,正是天文观测精确地验证了爱因斯坦关于光线在引力场中会偏转的预言之时,这轰动了全世界。   爱因斯坦是什么人?他怎么能享有如此崇高的声望?   爱因斯坦(1879—1955)是个犹太人,生于德国。1900年他毕业于瑞士苏黎世工业大学。由于他具有独立思想和离经叛道的性格,大学一毕业就失业。两年后他在伯尔尼瑞士专利局找到技术员的固定职业。他利用业余时间在1905年3月到6月这4个月内,写了4篇论文,在物理学3个不同领域(辐射理论,分子运动论,力学和电动力学的基本理论)都分别取得了有历史意义的成就。其中的一篇《论运动物体的电动力学》,提出了根本不同于传统观念的空间、时间理论,这被他后来称为“狭义相对论”。这个理论只是在德国比较受人注意,其他绝大多数物理学家都不接受它。而爱因斯坦没有理会这些,继续他的研究,其间也有停顿,也有挫折,但到了1915年底,他已有了结论。第2年初,他写了一篇完整的总结性论文《广义相对论的基础》。   广义相对论是一种引力理论,以它思想的深湛、丰富和形式的完整、美丽而令人赞叹。可是在它产生以后,能够验证它的实验事实却非常之少,有人甚至慨叹说:“爱因斯坦的广义相对论是何等美丽的理论,可是实验却少到令人羞愧。”还有人认为,广义相对论是理论物理学家的天堂,实验物理学家的地狱。最初的轰动效应过去了,广义相对论一度成为冷门,但随着实验手段的进步,它又形成研究的热潮。   爱因斯坦是获得过两次诺贝尔奖的伟大的科学家。第一次获奖是因为光子理论,第二次才是相对论。虽然他已发表了狭义相对论的论文,他仍然愿意写一些通俗的读物,把这一20世纪最伟大的科学发现介绍给更多的人。《狭义与广义相对论浅说》这本小书是1916年,即广义相对论发表那一年就写了的,他显然十分喜欢这项工作,不断地修订再版,直到他去世前3年,即1952年,出版了它的第15版。   虽然这本书是通俗读物,作者选取的事例——火车、箱子——也易于理解,但爱因斯坦是按照严格的逻辑推出它的结论的。   下面我们来看看爱因斯坦在何种条件下发现了这样的伟大理论。   19世纪末20世纪初,伽利略和牛顿创立的经典力学受到了强有力的挑战,物理学的宏伟大厦摇摇欲坠,为解答以太之谜,洛伦兹与彭加勒都做出了巨大努力,他们在一只手已叩响相对论的大门时停下了。他们囿于牛顿关于绝对时间和绝对空间的观念,不能做出根本性的突破。青年爱因斯坦没有思想包袱,有的是独立的批判精神,自然界的统一性的思想,他不能容忍自然现象的统一性被破坏。   早在200年前,伽利略就发现,所有的惯性系,对于表述力学定律都是同样有效的,平等的,不存在任何特殊的惯性系,这就是说,任何力学实验都无法辨别惯性系本身的运动状态。这种运动的相对性,在古典力学中普遍存在,但在麦克思韦电动力学中不能成立,因为它只适用于静止的坐标系。爱因斯坦认为,这种不对称不应是自然界所固有的,问题大概出在我们了解自然界的概念和理论上。他发现,只要把作为古典物理学基础的空间和时间概念进行适当的修改,这种“不对称”就可以消除。他在一个最平凡、最简单,也最不成问题的问题上找到突破口,这就是所谓“同时性”问题。他设计了一个纸上的实验证明,两个在空间上分开的事件的所谓“同时”,取决于它们相隔的空间距离和光信号的传播速度,在静止的观察者看来是同时的两个事件,在运动的观察者看来就不可能是同时的。这就是同时性的相对性。由此可见,时间与空间并不是井水不犯河水各不相干,而是存在着本质的联系,并且都同物质的运动有关。对于不同的惯性系,时间的量度不可能是相同的。那么,牛顿所认为的同空间和物质运动无关的,对任何惯性系都一样的“绝对时间”是不存在的。同样地,同物质运动无关的静止的“绝对空间”也是不存在的。既如此,爱因斯坦干脆地宣布,根本不存在所谓“以太”。这就完全改变了人们的时空观。   爱因斯坦着手建立一个统一的物理理论。他把伽利略力学运动的相对性原理扩展开来,使之包括所有物理定律。把它提升为公理;又把观测和实验得来的光速不变也提升为公理。如果两者同时成立,不同的惯性系的各个坐标之间必然存在一种确定的数学关系,这就是洛伦兹变换。通过这种变换,他推导出,运动的尺子要缩短;运动的钟要变慢;任何物体的运动速度都不能超过光速。由这个理论来看,以前的矛盾都解决了,古典力学定律成了物体在低速运动时的一种极限情况。自然现象在运动学方面显示出统一性。这就是“狭义相对论”。   相对论不仅引起了时空观的革命,也带来了整个物理学的革命,产生了深远的影响。其中最突出的,是关于物体的质量和能量相对性的推论,即E=mc2。这为以后原子弹的制造、核能的和平利用打下了理论基础。   1916年发表的《广义相对论的基础》则完成了现代物理学大厦的封顶工作。爱因斯坦发现,现实的有物质存在的空间,不是平坦的欧几里德空间,而是弯曲的黎曼空间;空间的弯曲程度取决于物质的质量及其分布状况,空间曲率就体现为引力场的强度。这就在更深一层意义上否定了牛顿的绝对时空观。广义相对论实质上是一种引力理论,它把几何学与物理学统一起来,用空间结构的几何性质来表述引力场。它同牛顿的引力论有本质的不同,但在日常人们接触到的现象中却分辨不出两者结果的差异。爱因斯坦提供了三个可供实验验证的推论。第一是水星近日点的进动,这在当时就得到完满解决。第二,在强引力场中,时钟要走得慢些,因此从巨大质量的星体表面射到地球上的光的谱线,必定显得要向光谱的红端移动。这在1925年得到观测验证。第三,光线在引力场中的偏转。这在第一次世界大战结束后的对日全食的观测中得到了验证,使广义相对论顷刻间闻名于世。   在这本书的第三部分,爱因斯坦应用他的理论对宇宙的模式进行了一些探讨。   爱因斯坦不仅在科学上做出了如此杰出的贡献。他热爱和平、曾经给罗斯福总统写信,敦促美国研制原子弹,赶在法西斯成功之前,用以结束战争。他性格既骄傲又谦虚,在自己的领域他很自负。当以色列国成立时,国家邀请他出任总统,他拒绝了。他还是一位比较出色的小提琴演奏家,在思考的间隙,他会在美妙的琴声中迷醉一会儿,这也许是使他的理论变得那么美丽的原因之一。 第一部分 狭义相对论   1.几何命题的物理意义   阅读本书的读者,大多数在做学生的时候就熟悉欧几里得几何学的宏伟大厦。你们或许会以一种敬多于爱的心情记起这座伟大的建筑。在这座建筑的高高的楼梯上,你们曾被认真的教师追迫了不知多少时间。凭着你们过去的经验,谁要是说这门科学中的那怕是最冷僻的命题是不真实的,你们都一定会嗤之以鼻。但是,如果有人这样问你们,“你们说这些命题是真实的,你们究竟是如何理解的呢?”那么你们这种认为理所当然的骄傲态度或许就会马上消失。让我们来考虑一下这个问题。   几何学是从某些象“平面”、“点”和“直线”之类的概念出发的,我们可以有大体上是确定的观念和这些要领相联系;同时,几何学还从一些简单的命题(公理)出发,由于这些观念,我们倾向于把这些简单的命题当作“真理”接受下来。然后,根据我们自己感到不得不认为是正当的一种逻辑推理过程,阐明其余的命题是这些公理的推论,也就是说这些命题已得到证明。于是,只要一个命题是以公认的方法从公理中推导出来的,这个命题就是正确的(就是“真实的”)。这样,各个几何命题是否“真实”的问题就归结为公理是否“真实”的问题。可是人们早就知道,上述最后一个问题不仅是用几何学的方法无法解答的,而且这个问题本身就是完全没有意义的。我们不能问“过两点只有一直线”是否真实。我们只能说,欧几里得几何学研究的是称之为“直线”的东西,它说明每一直线具有由该直线上的两点来唯一地确定的性质。“真实”这一概念有由该直线上的两点来唯一地确定的性质。“真实”这一概念与纯几何这一论点是不相符的,因为“真实”一词我们在习惯上总是指与一个“实在的”客体相当的意思;然而几何学并不涉及其中所包含的观念与经验客体之间的关系,而只是涉及这些观念本身之间的逻辑联系。   不难理解,为什么尽管如些我们还是感到不得不将这些几何命题称为“真理”。几何观念大体上对应于自然界中具有正确形状的客体,而这些客体无疑是产生这些观念的唯一渊源。几何学应避免遵循这一途径,以便能够使其结构获得最大限度的逻辑一致性。例如,通过位于一个在实践上可视为刚性的物体上的两个有记号的位置来查看“距离”的办法,在我们的思想习惯中是根深蒂固的。如果我们适当地选择我们的观察位置,用一只眼睛观察而能使三个点的视位置相互重合,我们也习惯于认为这三个点位于一条直线上。   如果,按照我们的思想习惯,我们现在在欧几里得几何学的命题中补充一个这样的命题,即在一个在实践上可视为刚性的物体上的两个点永远对应于同一距离(直线间隔),而与我们可能使该物体的位置发生的任何变化无关,那么,欧几里得几何学的命题就归结为关于各个在实践上可以视为刚性的物体的所有相对位置的命题。作了这样补充的几何学可以看作物理学的一个分支。现在我们就能够合法地提出经过这样解释的几何命题是否“真理”的问题;因为我们有理由问,对于与我们的几何观念相联系的那些实在的东西来说,这些命题是否被满足。用不太精确的措词来表达,上面这句话可以说成为,我们把此种意义的几何命题的“真实性”理解为这个几何命题对于用圆规和直尺作图的有效性。   当然,以此种意义断定的几何命题的“真实性”,是仅仅以不太完整的经验为基础的。目下,我们暂先认定几何命题的“真实性”。然后我们在后一阶段(在论述广义相对论时)将会看到,这种“真实性”是有限的,那时我们将讨论这种有限性范围的大小。   2.坐标系   根据前已说明的对距离的物理解释,我们也能够用量度的方法确立一刚体上两点间的距离。为此目的,我们需要有一直可用来作为量度标准的一个“距离”(杆S)。如果A和B是一刚体上的两点,我们可以按照几何学的规则作一直线连接该两点:然后以A为起点,一次一次地记取距离S,直到到达B点为止。所需记取的次数就是距离AB的数值量度,这是一切长度测量的基础。   描述一事件发生的地点或一物体在空间中的位置,都是以能够在一刚体(参考物体)上确定该事件或该物体的相重点为根据的,不仅科学描述如此,对于日常生活来说亦如此。如果我来分析一下“北京天安门广场”这一位置标记,我就得出下列结果。地球是该位置标记所参照的刚体;“北京天安门广场”是地球上已明确规定的一点,已经给它取上了名称,而所考虑的事件则在空间上与该点是相重合的。   这种标记位置的原始方法只适用于刚体表面上的位置,而且只有在刚体表面上存在着可以相互区分的各个点的情况下才能够使用这种方法。但是我们可以摆脱这两种限制,而不致改变我们的位置标记的本质。譬如有一块白云飘浮在天安门广场上空,这时我们可以在天安门广场上垂直地竖起一根竿子直抵这块白云,来确定这块白云相对于地球表面的位置,用标准量杆量度这根竿子的长度,结合对这根竿子下端的位置标记,我们就获得了关于这块白云的完整的位置标记。根据这个例子,我们就能够看出位置的概念是如何改进提高的。   (1)我们设想将确定位置所参照的刚体加以补充,补充后的刚体延伸到我们需要确定其位置的物体。   (2)在确定物体的位置时,我们使用一个数(在这里是用量杆量出来的竿子长度),而不使用选定的参考点。   (3)即使未曾把高达云端的竿子竖立起来,我们也可以讲出云的高度,我们从地面上各个地方,用光学的方法对这块云进行观测,并考虑光传播的特性,就能够确定那需要把它升上云端的竿子的长度。   从以上的论述我们看到,如果在描述位置时我们能够使用数值量度,而不必考虑在刚性参考物体上是否存在着标定的位置(具有名称的),那就会比较方便。在物理测量中应用笛卡儿坐标系达到了这个目的。   笛卡儿坐标系包含三个相互垂直的平面,这三个平面与一刚体牢固地连接起来。在一个坐标系中,任何事件发生的地点(主要)由从事件发生的地点向该三个平面所作垂线的长度或坐标(x,y,z)来确定,这三条垂线的长度可以按照欧几里得几何学所确立的规则和方法用刚性量杆经过一系列的操作予以确定。   在实际上,构成坐标系的刚性平面一般来说是用不着的;还有,坐标的大小不是用刚杆结构确定的,而是用间接的方法确定的。如果要物理学和天文学所得的结果保持其清楚明确的性质,就必须始终按照上述考虑来寻求位置标示的物理意义。   由此我们得到如下的结果:事件在空间中的位置的每一种描述都要使用为描述这些事件而必须参照的一个刚体。所得出的关系系以假定欧几里得几何学的定理适用于“距离”为依据;“距离”在物理上一般习惯是以一刚体上的两个标记来表示。   3.经典力学中的空间和时间   力学的目的在于描述物体在空间中的位置如何随“时间”而改变。如果我未经认真思考、不加详细的解释就来表述上述的力学的目的,我的良心会承担违背力求清楚明确的神圣精神的严重过失。让我们来揭示这些过失。   这里,“位置”和“空间”应如何理解是不清楚的。设一列火车正在匀速地行驶,我站在车厢窗口松手丢下(不是用力投掷)一块石头到路基上。那么,如果不计空气阻力的影响,我看见石头是沿直线落下的。从人行道上观察这一举动的行人则看到石头是沿抛物线落到地面上的。现在我问,石头所经过的各个“位置”是“的确”在一条直线上,还是在一条抛物线上的呢,还有,所谓“在空间中”的运动在这里是什么意思呢?根据前一节的论述,就可以作出十分明白的答案。首先,我们要完全避开“空间”这一模糊的字眼,我们必须老实承认,对于“空间”一词,我们无法构成丝毫概念;因此我们代之以“相对于在实际上可看作刚性的一个参考物体的运动”。关于相对于参考物体(火车车厢或铁路路基)的位置,在前节中已作了详细的规定。如果我们引入“坐标系”这个有利于数学描述的观念来代替“参考物体”,我们就可以说,石块相对于与车厢牢固地连接在一起的坐标系走过了一条直线,但相对于与地面(路基)牢固地连接在一起的坐标系,则石块走过了一条抛物线。借助于这一实例可以清楚地知道不会有独立存在的轨线(字面意义是“路程——曲线”);而只有相对于特定的参考物体的轨线。   为了对运动作完整的描述,我们必须说明物体如何随时间而改变其位置;亦即对于轨线上的每一个点必须说明该物体在什么时刻位于该点上。这些数据必须补充这样一个关于时间的定义,依靠这个定义,这些时间值可以在本质上看作可观测的量(即测量的结果)。如果我们从经典力学的观点出发,我们就能够举出下述方式的实例来满足这个要求。设想有两个构造完全相同的钟;站在车厢窗口的人拿着其中的一个,在人行道上的人拿着另一个。两个观察者各自按照自己所持时钟的每一声滴嗒刻划下的时间来确定石块相对于他自已的参考物体所占据的位置。在这里我们没有计入因光的传播速度的有限性而造成的不准确性。对于这一点以及这里的另一个主要困难,我们将在以后详细讨论。   4.伽利略坐标系   如所周知,伽利略-牛顿力学的基本定律(称为惯性定律)可以表述如下:一物体在离其他物足够远时,一直保持静止状态或保持匀速直线运动状态。这个定律不仅谈到了物体的运动,而且指出了不违反力学原理的、可在力学描述中加以应用的参考物体或坐标系。相对于人眼可见的恒星那样的物体,惯性定律无疑是在相当高的近似程度上能够成立的。现在如果我们使用一个与地球牢固地连接在一起的坐标系,那么,相对于这一坐标系,每一颗恒星在一个天文日当中都要描画一个具有莫大的半径的圆,这个结果与惯性定律的陈述是相反的。因此,如果我们要遵循这个定律,我们就只能参照恒星在其中不作圆周运动的坐标系来考察物体的运动。若一坐标系的运动状态使惯性定律对于该坐标系而言是成立的,该坐标系即称为“伽利略坐标系”。伽利略-牛顿力学诸定律只有对于伽利略坐标系来说才能认为是有效的。   5.相对性原理(狭义)   为了使我们的论述尽可能地清楚明确,让我们回到设想为匀速行驶中的火车车厢这个实例上来。我们称该车厢的运动为一种匀速平移运动(称为“匀速”是由于速度和方向是恒定的;称为“平移”是由于虽然车厢相对于路基不断改变其位置,但在这样的运动中并无转动)。设想一只大乌鸦在空中飞过,它的运动方式从路基上观察是匀速直线运动。用抽象的方式来表述,我们可以说:若一质量M相对于一坐标系K作匀速直线运动,只要第二个坐标系K'相对于K是在作匀速平移运动,则该质量相对于第二个坐标系K'亦作匀速直线运动。根据上节的论述可以推出:   若K为一伽利略坐标系,则其他每一个相对于K作匀速平移运动的坐标系K'亦为一伽利略坐标系。相对于K',正如相对于K一样,伽利略-牛顿力学定律也是成立的。   如果我们把上面的推论作如下的表述,我们在推广方面就前进了一步:K'是相对于K作匀速运动而无转动的坐标系,那么,自然现象相对于坐标系K'的实际演变将与相对于坐标系K的实际演变一样依据同样的普遍定律。这个陈述称为相对性原理(狭义)。   只要人们确信一切自然现象都能够借助于经典力学来得到完善的表述,就没有必要怀疑这个相对性原理的正确性。但是由于晚近在电动力学和光学方面的发展,人们越来越清楚地看到,经典力学为一切自然现象的物理描述所提供的基础还是不够充分的。到这个时候,讨论相对性原理的正确性问题的时机就成熟了,而且当时看来对这个问题作否定的签复并不是不可能的。   然而有两个普遍事实在一开始就给予相对性原理的正确性以很有力的支持。虽然经典力学对于一切物理现象的理论表述没有提供一个足够广阔的基础,但是我们仍然必须承认经典力学在相当大的程度上是“真理”,因为经典力学对天体的实际运动的描述,所达到的精确度简直是惊人的。因此,在力学的领域中应用相对性原理必然达到很高的准确度。一个具有如此广泛的普遍性的原理,在物理现象的一个领域中的有效性具有这样高的准确度,而在另一个领域中居然会无效,这从先验的观点来看是不大可能的。   现在我们来讨论第二个论据,这个论据以后还要谈到。如果相对性原理(狭义)不成立,那么,彼此作相对匀速运动的K、K'、K"等一系列伽利略坐标系,对于描述自然现象就不是等效的。在这个情况下我们就不得不相信自然界定律能够以一种特别简单的形式来表述,这当然只有在下列条件下才能做到,即我们已经从一切可能有的伽利略坐标系中选定了一个具有特别的运动状态的坐标系(K)作为我们的参考物体。这样我们就会有理由(由于这个坐标系对描述自然现象具有优点)称这个坐标系是“绝对静止的”,而所有其他的伽利略坐标系K都是“运动的”,举例来说,设我们的铁路路基是坐标系K0,那么我们的火车车厢就是坐标系K,相对于坐标系K成立的定律将不如相对于坐标系K0成立的定律那样简单。定律的简单性的此种减退是由于车厢K相对于K0而言是运动的(亦即“真正”是运动的)。在参照K所表述的普遍的自然界定律中,车厢速度的大小和方向必然是起作用的。例如,我们应该预料到,一个风琴的大小和方向必然是起作用的。例如,我们应该预料到,一个风琴管当它的轴与运动的方向平行时所发出的音调将不同于当它的轴与运动的方向垂直时所发出的音调。由于我们的地球是在环绕太阳的轨道上运行,因而我们可以把地球比作以每秒大约30公里的速度行驶的火车车厢。如果相对性原理是不正确的,我们就应该预料到,地球在任一时刻的运动方向将会在自然界定律中表现出来,而且物理系统的行为将与其相对于地球的空间取向有关。因为由于在一年中地球公转速度的方向的变化,地球不可能在全年中相对于假设的坐标系K0处于静止状态。但是,最仔细的观察也从来没有显示出地球物理空间的这种各向异性(即不同方向的物理不等效性)。这是一个支持相对性原理的十分强有力的论据。   6.经典力学中所用的速度相加定理   假设我们的旧相识,火车车厢,在铁轨上以恒定速度v行驶;并假设有一个人在车厢里沿着车厢行驶的方向以速度w从车厢一头走到另一头。那么在这个过程中,对于路基而言,这个人向前走得有多快呢?换句话说,这个人前进的速度W有多大呢?唯一可能的解答似乎可以根据下列考虑而得:如果这个人站住不动一秒钟,在这一秒钟里他就相对于路基前进了一段距离v,在数值上与车厢的速度相等。但是,由于他在车厢中向前走动,在这一秒钟里他相对于车厢向前走了一段距离儿也就是相对于路基又多走了一段距离w,这段距离在数值上等于这个人在车厢里走动的速度。这样,在所考虑的这一秒钟里他总共相对于路基走了距离W=v+w。我们以后将会看到,表述了经典力学的速度相加定理的这一结果,是不能加以支持的;换句话说,我们刚才写下的定律实质上是不成立的。但目前我们暂时假定这个定理是正确的。   7.光的传播定律与相对性原理的表面抵触   在物理学中几乎没有比真空中光的传播定律更简单的定律了,学校里的每个儿童都知道,或者相信他知道,光在真空中沿直线以速度c=300,000公里/秒传播。无论如何我们非常精确地知道,这个速度对于所有各色光线都是一样的。用力如果不是这样,则当一颗恒星为其邻近的黑暗星体所掩食时,其各色光线的最小发射值就下会同时被看到。荷兰天文学家德西特(De Sitter)根据对双星的观察,也以相似的理由指出,光的传播速度不能依赖于发光物体的运动速度。关于光的传播速度与其“在空间中”的方向有关的假定即就其本身而言也是难以成立的。   总之,我们可以假定关于光(在真空中)的速度c是恒定的这一简单的定律已有充分的理由为学校里的儿童所确信。谁会想到这个简单的定律竞会使思想周密的物理学家陷入智力上的极大的困难呢?让我们来看看这些困难是怎样产生的。   当然我们必须参照一个刚体(坐标系)来描述光的传播过程(对于所有其他的过程而言确实也都应如此)。我们再次选取我们的路基作为这种参考系。我们设想路基上面的空气已经抽空。如果沿着路基发出一道光线,根据上面的论述我们可以看到,这道光线的前端将相对于路基以速度c传播现在我们假定我们的车厢仍然以速度v在路轨上行驶,其方向与光线的方向同,不过车厢的速度当然要比光的速度小得多。我们来研究一下这光线相对于车厢的传播速度问题。显然我们在这里可以应用前一节的推论,因为光线在这晨就充当了相对于车厢走动的人。人相对于路基的速度W在这晨由光相对于路基的速度代替。W是所求的光相对于车厢的速度。我们得到:   w=c-v   于是光线相对于车厢的传播速度就出现了小于的情况。   但是这个结果是与第5节所阐述的相对性原理相抵触的。因为,根据相对性原理,真空中光的传播定律,就象所有其他普遍的自然界定律一样,不论以车厢作为参考物体还是以路轨作为物体,都必须是一样的。但是,从我们前面的论述看来,这一点似乎是不可能成立的。如果所有的光线相对于路基都以速度c传播,那么由于这个理由似乎光相对于车厢的传播就必然服从另一定律——这是一个与相对性原理相抵触的结果。   由于这种抵触,除了放弃相对性原理或放弃真空中光的传播的简单定律以外,其他办法似乎是没有的。仔细地阅读了以上论述的读者几乎都相信我们应该保留相对性原理,这是因为相对性原理如此自然而简单,在人们的思想中具有很大的说服力。因而真空中光的传播定律就必须由一个能与相对性原理一致的比较复杂的定律所取代。但是,理论物理学的发展径。具有划时代意义的洛伦兹对于与运动物体相关的电动力学和光学现象的理论研究表明,在这个领域中的经验无可争辩地导致了关于电磁现象的一个理论,而真空中光速恒定定律是这个理论的必然推论。因此,尽管不曾发现与相对性原理相抵触的实验数据,许多著名的理论物理学家还是比较倾向于舍弃相对性原理。   相对论就是这个关头产生的。由于分析了时间和空间的物理概念,人们开始清楚地看到,相对性原理和光的传播定律实际上丝毫没有抵触之处,如果系统地贯乇这两个定律,就能够得到一个逻辑严谨的理论。这个理论已称为狭义相对论,以区别于推广了的理论,对于广义理论我们将留待以后再去讨论。下面我们将叙述狭义相对论的基本观念。   8.物理学的时间观   在我们的铁路路基上彼此相距相当远的两处A和B,雷电击中了铁轨。我再补充一句,这两处的雷电闪光是同时发生的。如果我问你这句话有没有意义,你会很肯定地口答说,“有”。但是,如果我接下去请你更确切地向我解释一下这句话的意义,那么你在考虑一下以后就会感到回答这个问题并不象乍看起来那样容易。   经过一些时间的考虑之后,你或许会想出如下的回答:“这句话的意义本来就是清楚的,无需再加解释;当然,如果要我用观测的方法来确定在实际情况中这两个事件是否同时发生的,我就需要考虑考虑。”对于这个答复我不能感到满意,理由如下,假定有一位能干的气象学家经过巧妙的思考发现闪电必然总是同时击中A处和B处的话,那么我们就面对着这样的任务,即必须检验一下这个理论结果是否与实际相符。在一切物理陈述中凡是含有“同时”概念之处,我们都遇到了同样的困难。对于物理学家而言,在他有可能判断一个概念在实际情况中是否真被满足以前,这概念就还不能成立。因此我们需要有这样一个同时性定义,这定义必须能提供一个方法,以便在本例中使物理学家可以用这个方法通过实验来确定那两处雷击是否真正同时发生。如果在这个要求还没有得到满足以前,我就认为我能够赋予同时性这个说法以某种意义,那么作为一个物理学家,这就是自欺欺人(当然,如果我不是物理学家也是一样)。(请读者完全搞通这一点之后再继续读下去,〕   在经过一些时间的思考之后,你提出下列建议来检验同时性,沿着铁轨测量就可以量出连线AB的长度,然后把一位观察者安置在距离AB的中点M,这位观察者应备有一种装置(例如相互成90度的两面镜子),使他用目力一下于就能哆既观察到且处又观察到B处。如果这位观察者的视神经在同一时刻感觉到这两个雷电闪光,那么这两个雷电闪光就必定是同时的。   对于这个建议我感到十分高兴,但是尽管如此我仍然不能认为问题已经完全解决,因为我感到不得不提出以下的不同意见,“如果我能够知道,观察者站在M处赖以看到闪电的那些光,从且传播到M的速度与从日传播到M的速度确是相同,那么你的定义当然是对的。但是,要对这个假定进行验证,只有我们已经掌握测量时间的方法才存可能。因此从逻辑上看来我们好象尽是在这里兜圈子。”   经过进一步考虑后,你带着些轻蔑的神气瞟我一眼(这是无可非议的),并宣称,“尽管如此我仍然维持我先前的定义,因为实际上这个定义完全没有对光作过任何假定。对于同时性的定义仅有一个要求,那就是在每一个实际情况中这个定义必须为我们提供一个实验方法来判断所规定的概念是否真被满足。我的定义已经满足这个要求是无可争辩的。光从A传播到M与从B传播到M所需时间相同,这实际上既不是关于光的物理性质的假定,也不是关于光的物理性质的假说。而仅是为了得出同时性的定义我按照我自己的自由意志所能作出的一种规定。”   显然这个定义不仅能够对两个事件的同时性,而且能够对我们愿意选定的任意多个事件的同时性规定出一个确切的意义,而与这些事件发生的地点相对于参考物体(在这里就是铁路路基)的位置无关,由此我们也可以得出物理学的“时间”定义。为此,我们假定把构造完全相同的钟放在铁路线(坐标系)上的A、B和C诸点上,并这样校准它们,使它们的指针同时(按照上述意义来理解)指着相同的位置。在这些条件下,我们把一个事件的“时间”理解力放置在该事件的(空间)最邻近处的那个钟上的读数(指钵所指位置)。这样,每一个本质上可以观测的事件都有一个时间数值与之相联系。   这个规定还包含着另一个物理假说,如果没有相反的实验证据的话,这个假说的有效性是不大会被人怀疑的,这里已经假定,如果所有这些钟的构造完全一样,它们就以同样的时率走动。说得更确切些:如果我们这样校准静止在一个参考物体的不同地方的两个钟,使其中一个钟的指针指着某一个特定的位置的同时(按照上述意义来理解),另一个钟的指针也指着相同的位置,那么完全相同的“指针位置”就总是同时的(同时的意义按照上述定义来理解)。   9.同时性的相对性   到目前为止,我们的论述一直是参照我们称之为“铁路路基”的一个特定的参考物体来进行的,假设有一列很长的火车,以恒速v沿着图1所标明的方向在轨道上行驶。在这列火车上旅行的人们可以很方便地把火车当作刚性参考物体(坐标系):他们参照火车来观察一切事件。因而,在铁路线上发生的每一个事件也在火车上某一特定的地点发生,而且完全和相对于路基所作的同时性定义一样,我们也能够相对于火车作出同时性的定义。但是,作为一个自然的推论,下述问题就随之产生:   对于铁路路基来说是同时的两个事件(例如A、B两处雷击),对于火车来说是否也是同时的呢,我们将直接证明,回答必然是否定的。   当我们说A、B两处雷击相对于路基页言是同时的,我们的意思是:在发生闪电的A处和B处所发出的光,在路基A→B这段距离的中点M相遇。但是事件A和B也对应于火车上的A点和B点。令M'为在行驶中的火车上A→B这段距离的中点。正当雷电闪光发生的时候,点M'自然与M重合,但是点M'以火车的速度v向图中的右方移动。如果坐在火车上M'处的一个观察者并不具有这个速度,那么他就总是停留在M点,雷电闪光A和B所发出的光就同时到达他这里,也就是说正好在他所在的地方相遇。可是实际上(相对于铁路路基来考虑)之个观察者正在朝着来自B的光线急速行进,同时他又是在来自A的光线的前方向前行进。因此这个观察者将先看见自B发出的光线,后看见自A发出的光线。所以,把列车当作参考物体的观察者就必然得出这样的结论,即雷电闪光B先于雷电闪光A发生。这样我们就得出以下的重要结果:   对于路基是同时的若干事件,对于火车并不是同时的,反之亦然(同时性的相对性)。每一个参考物体(坐标系)都有它本身的特殊的时间;除非我们讲出关于时间的陈述是相对于哪一个参考物体的,否则关于一个事件的时间的陈述就没有意义。   在相对论创立以前,在物理学中一直存在着一个隐含的假定,即时间的陈述具有绝对的意义,亦即时间的陈述与参考物体的运动状态无关。但是我们刚才看到,这个假定与最自然的同时性定义是不相容的;如果我们抛弃这个假定,那么真空中光的传播定律与相对性原理之间的抵触(详见第7节)就消失了。   这个抵触是根据第6节的论述推论出来的,这些论点现在已经站不住脚了。在该节我们曾得出这样的结论:在车厢里的人如果相对于车厢每秒走距离w,那么在每一秒钟的时间里他相对于路基也走了相同的一段距离。但是,按照以上论述,相对于车厢发生一特定事件的需要的时间,决不能认为就等于从路基(作为参考物体)上判断的发生同一事件所需要的时间。因此我们不能硬说在车厢里走动的人相对于铁路线走距离w所需的时间从路基上判断也等于一秒钟。   此外,第6节的论述还基于另一个假定。按照严格的探讨看来,这个假定是任意的,虽然在相对论创立以前人们一直在物理学中隐藏着这个假定。   10.距离概念的相对性   我们来考虑火车上的两个特定的点,火车以速度v在铁路上行驶,现在要研究这两个点之间的距离。我们已经知道,测量一段距离,需要有一个参考物体,以便相对于这个物体量出这段距离的长度。最简单的办法是利用火车本身作为参考物体(坐标系).在火车上的一个观察者测量这段间隔的方法是用他的量杆沿着一条直线(例如沿着车厢的地板)一下一下地量,从一个给定的点到另一个给定的点需要量多少下他就量多少下。那么告诉我们这个量杆需要量多少下的那个数字就是所求的距离。   如果火车上的这段距离需要从铁路线上来判断,那就是另一回事了,这里可以考虑使用下述方法。如果我们把需要求出其距离的火车上的两个点称为A’和B’,那么这两个点是以速度v沿着路基移动的。首先我们需要在路基上确定两个对应点A和B,使其在一特定时刻,恰好各为A’和B’所通过(由路基判断)。路基上的且点和日点可以引用第8节所提出的时间定义来确定,然后再用量杆沿着路基一下一下地量取A、B两点之间的距离。   从先验的观点来看,丝毫不能肯定这次测量的结果会与第一次在火车车厢中测量的结果完全一样。因此,在路基上量出的火车长度可能与在火车上量出的火车长度不同,这种情况使我们有必要对第6节中从表面上看来是明白的论述提出第二个不同意见。就是,如果在车厢里的人在单位时间内走了一段距离w(在火车上测量的),那么这段距离如果在路基上测量并不一定也等于w。   11.洛伦兹变换   上面最后三节的结果表明,光的传播定律与相对性原理的表面抵触(第7节)是根据这样一种考虑推导出来的,这种考虑从经典力学借用了两个不确当的假设;这两个假设就是:   (1)两事件的时间间隔(时间)与参考物体的运动状况无关。   (2)一刚体上两点的空间间隔(距离)与参考物体的运动   如果我们舍弃这两个假设,第7节中的两难局面就会消失,因为第6节所导出的速度相加定理就失效了,看来真空中光的传播定律与相对性原理是可以相容的,因此就产生这样的问题:我们必须如何修改第6节的论述以便消除这两个基本经验结果之间的表面矛盾,这个问题导致了一个普遍性问题。在第6节的讨论中,我们既要相对于火车又要相对于路基来谈地点和时间,如果我们已知一事件相对于铁路路基的地点和时间,如何求出该事件相对于火车的地点和时间呢?对于这个问题能否想出能使真空中光的传播定律与相对性原理不相抵触的解答,换言之:我们能否设想,在各个事件相对于一个参考物体的地点和时间与各该事件相对于另一个参考物体的地点和时间之间存在着这样一种关系,使得每一条光线无论相对于路基还是相对于火车,它的传播速度都是c呢?这个问题获得了一个十分明确的肯定解答,并且导致了用来把一个事件的空一时量值从一个参考物体变换到另一个参考物体的一个十分明确的变换定律。   在我们讨论这一点之前,我们将先提出需要附带考虑的下列问题。到目前为止,我们仅考虑了沿着路基发生的事件,这个路基在数学上必须假定它起一条直线的作用。如第2节所述,我们可以设想这个参考物体在横向和竖向各予补充一个用杆构成的框架,以便参照这个框架确定任何一处发生的事件的空间位置。同样,我们可以设想火车以速度”继续不断地横亘整个空间行驶着,这样,无论一事件有多远,我们也都能参照另一个框架来确定其空间位置。我们尽可不必考虑这两套框架实际上会不会因固体的不可入性而不断地相互干扰的问题;这样做不致于造成任何根本性的错误,我们可以设想,在每一个这样的框架中,划出三个互相垂直的面,称之为“坐标平面”(在整体上这些坐标平面共同构成一个“坐标系”)。于是,坐标系K对应于路基,坐标系K’对应于火车。一事件无论在何处发生,它在空间中相对于K的位置可以由坐标平面上的三条垂线x,y,z来确定,时间则由一时间量值:来确定,相对于K',此同一事件的空间位置和时间将由相应的量值x',y',z',t'来确定,这些量值与x,y,z,t当然并不是全等的。关于如何将这些量值看作为物理测量的结果,上面己作了详细的叙述。   显然我们面临的问题可以精确地表述如下,若一事件相对于K的x,y,z,t诸量值为何?在选定关系式时,无论是相对于K或是相对于K',对于同一条光线而言(当然对于每一条光线都必须如此)真空中光的传播定律必须被满足。若这两个坐标系在空间中的相对取向如图2所示,这个问题就可以由下列议程组解出:   这个议程组称为“洛伦兹变换”。   如果我们不根据光的传播定律,而根据旧力学中所隐含的时间和长度具有绝对性的假定,那么我们所得到的就不会是上述方程组,而是如下的方程组:   x'=x-vt   y'=y   z'=z   t'=t   这个方程组称为“伽利略变换”,在洛伦兹变换方程中,我们如以无穷大值代换光速c,就可以得到伽利略变换方程。   通过下述例示,我们可以很容易地看到,按照洛伦兹变换,无论对于参考物体K还是对于参考物体K',真空中光的传播定律都是被满足的。例如沿着正x轴发出一个光信号,这个光刺激按照下列方程前进   x=ct   亦即以速度c前进。按照洛伦兹变换方程,x和t之间有了这个简单的关系,则在x'和t'之间当然也存在着一个相应的关系,事实也正是如此:把x的值ct代入洛伦兹变换的第一个和第四个方程中,我们就得到:   这两方程相除,即直接得出下式:   x'=ct'   亦即参照坐标系K',光的传播应当按照此方程式进行,由此我们看到,光相对于参考物体K'的传播速度同样也是等于c。对于沿着任何其他方向传播的光线我们也得到同样的结果。当然,这一点是不足为厅的,因为洛伦兹变换议程就是依据这个观点推导出来的。   12.量杆和钟在运动时的行为   我沿着K'的x'轴放置一根米尺,令其一端(始端)与点x'=0重合,另一端(末端)与点x'=1重合。问米尺相对于参考系K的长度为何?要知道这个长度,我们只须求出在参考系K的某一特定时刻t、米尺的始端和末端相对于K的位置。借助于洛伦兹变换第一方程,该两点在时刻t=0的值可表示为   两点间的距离为。但米尺相对于K以速度度v运动。因此,沿着其本身长度的方向以速度v运动的刚性米尺的长度为米。因此刚尺在运动时比在静止时短,而且运动得越快刚尺就越短。当速度v=c,我们就有=0,对于较此更大的速度,平方根就变为虚值,由此我们得出结论:在相对论中,速度c具有极限速度的意义,任何实在的物体既不能达到也不能超出这个速度。   当然,速度c作为极限速度的这个特性也可以从洛伦兹变换方程中清楚地看到,因为如果我们选取比c大的v值,这些方程就没有意义。   反之,如果我们所考察的是相对于K静止在x轴上的一根米尺,我们就应该发现,当从K'去判断时,米尺的长度是,这与相对性原理完全相合,而相对性原理是我们进行考察的基础。   从先验的观点来看,显然我们一定能够从变换方程中对量杆和钟的物理行为有所了解,因为x,y,z,t诸量不多也不少正是借助于量杆和钟所能获得的测量结果。如果我们根据伽利略变换进行考察,我们就不会得出量杆因运动而收缩的结果。   我们现在考虑永久放在K'的原点(x'=0)上的一个按秒报时的钟。t'=0和t'=1对应于该钟接连两声滴嗒。对于这两次滴嗒洛伦兹变换的第一和第四议程给出:   t=0   从K去判断,该钟以速度v运动;从这个参考物体去判断,该钟两次滴嗒之间所经过的时间不是1秒,而是秒,亦即比1秒钟长一些。该钟因运动而比静止时走得慢了。速度c在这里也具有一种不可达到的极限速度的意义。   13.速度相加定理斐索实验   在实践上我们使钟和量杆运动所能达到的速度与光速相比是相当小的;因此我们不大可能将前节的结果直接与实在的情况比较。但是,另一方面,这些结果必然会使读者感到十分奇特;因此,我将从这个理论再来推出另外一个结论,这个结论很容易从前面的论述中推导出来,而且这个结论已十分完善地为实验所证实。   在第6节我们推导出同向速度相加定理,其所取形式也可以由经典力学的假设推出。这个定理也可以很容易地由伽利略变换(第11节)推演出来。我们引进相对于坐标系K'按照下列方程运动的一个质点来代替在车厢里走动的人   x=wt'   借助于伽利略变换的第一和第四方程,我们可以用x和t来表示x'和t',我们得到其间的关系式   x=(v+w)t   这个方程所表示的正是该点相对于坐标系K的运动定律(人相对于路基的运动定律)。我们用符号W表示这个速度,象在第6节一样,我们得到   W=v+w   但是我们同样也可以根据相对论来进行这一探讨。在方程   x'=wt' 中我们必须引用洛伦兹变换的第一和第四方程借以用x和t来表示x'和t'。这样我们得到的就不是方程(A),而是方程(B)。   这个方程对应于以相对论为依据的另一个同向速度相加定理。现在引起的问题是这两个定理哪一个更好地与经验相符合。关于这个问题,我们可以从杰出的物理学家斐索在半个多世纪以前所做的一个极为重要的实验上得到启发,这个实验在后来曾由一些最优秀的实验上得到启发,这个实验在后来曾由一些最优秀的实验物理学家重新做过,因此,这个实验的结果是无可怀疑的。这个实验涉及下述问题。光以特定速度w在静止的液体中传播。现在如果上述液体以速度v在管T内流动,那么光在管内尚箭头(图3)所指方向的传播速度有多快呢?   按照相对性原理,我们当然必须认定光相对于液体总是以同一速度w传播的,不论此液体相对于其他物体运动与否。因此,光相对于液体的速度和液体相对于管的速度皆为已知,我们需要要求出光相对于管的速度。   显然我们又遇到了第6节所论述的问题。管相当于铁路路基或坐标系K,液体相当于车厢或坐标系K',而光则相当于沿着车厢走动的人或本节所引进的运动质点。如果我们用W表示光相对于管的速度,那么W就应按照方程(A)或方程(B)计算,视伽利略变换符合实际还是洛伦兹变换符合实际而定。实验①作出的决定是支持由相对论推出的方程(B),而且其符合的程度的确是很精确的,根据塞曼最近所作的极其卓越的测量,液体流速v对光的传播的影响确实可以用公式(B)来表示,而且其误差恒在百分之一以内。   然而我们必须注意到这一事实,即早在相对论提出以前,洛伦兹就已经提出了关于这个现象的一个理论。这个理论纯属电动力学性质,并且是引用关于物质的电磁结构的特别假说而得出的。然而这种情况丝毫没有减弱这个实验作为支持相对论的判决试验的确实性,因为原始的理论是由麦克斯韦-洛伦兹电动力学建立起来的,而后者与相对论并无丝毫抵触之处。说得更恰当些,相对论是由电动力学发展而来的,是以前相互独立的用以组成电动力学本身的各个假说的一种异常简明的综合和概括。   14.相对论的启发作用   我们在前面各节的思路可概述如下。经验导致这样的论断,即一方面相对性原理是正确的,另一方面光在真空中的传播速度必须认为等于恒量c。把这两个公设结合起来我们就得到有关构成自然界过程诸事件的直角坐标x,y,z和时间t在量值上的变换定律,关于这一点,与经典力学不同,我们所得到的不是伽利略变换,而是洛伦兹变换。   在这个思考过程中,光的传播定律——这是根据我们的实际知识有充分理由加以接受的一个定律——起了重要的作用。然而一旦有了洛伦兹变换,我们就可以把洛伦兹变换和相对性原理结合起来,并将得出的理论总括如下:   每一个普遍的自然界定律必须是这样建立的,若我们引用新的坐标系K’的空时变量x',y',z',t'来代替原来的坐标系K的空时变量x,y,z,t,则经过变换以后该定律仍将取与原来完全相同的形式。这里,不带撇的量和带撇的量之间的关系就由洛伦兹变换公式来决定。或简言之,普遍的自然界定律对于洛伦兹变换是协变的。   这是相对论对自然界定律所要求的一个明确的数学条件。因此,相对论在帮助探索普遍的自然界定律中具有宝贵的启发作用。反之,如果发现一个具有普遍性的自然界定律并不满足这个条件的话,就证明相对论的两个基本假定之中至少有一个是不正确的。现在让我们来看一看到目前为止相对论已确立了哪些普遍性结果。   15.狭义相对论的普遍性结果   我们前面的论述清楚地表明,(狭义)相对论是从电动力学和光学发展出来的。在电动力学和光学的领域中,狭义相对论对理论的预断井未作多少修改;但狭义相对论大大简化了理论的结构,亦即大大简化了定律的推导,而且更加重要得多的是狭义相对论大大减少了构成理论基础的独立假设的数目.狭义相对论使得麦克斯韦一洛伦兹理论看来好象很合理,以致即使实验没有明显地予以支持,这个理论也能力物理学家普遍接受。   经典力学需要经过修改才能与狭义相对论的要求取得一致。但是此种修改大体上只对物质的速度。比光速小得不多的高速运动定律有影响。我们只有在电子和离于的问题上才能遇到这种高速运动;对于其他运动则狭义相对论所得结果与经典力学定律相差极微,以致在实践中此种差异未能明确地表现出来。在我们未开始讨论广义相对论以前,将暂不考虑星体的运动。按照相对论,具有质量m的质点的动能不能再由众所周知的公式来表达,而是应由另一公式来表达。当速度v趋近于光速c时,此式趋近于无穷大。因此,无论用于产生加速度的能量有多大,速度v必然总是小于c。若将动能的表示式以级数形式展开,即得   若与1相比时相当微小,上式第三项与第二项相比也总是相当微小,所以在经典力学中一般不予计入而只考虑其中的第二项。第一项并不包含速度v,若我们只讨论质点的能量如何依速度而变化的问题,这一项也就无需加以考虑。我们将在以后再叙述它的本质上的意义。   狭义相对论导致的具有普遍性的最重要的结果是关于质量的概念。在相对论创立前,物理学确认两个具有基本重要性的守恒定律,即能量守恒定律和质量守恒定律;过去这两个基本定律看来好象是完全相互独立的。借助于相对论,这两个定律己结合为一个定律。我们将简单地考察一下此种结合是如何实现的,并且会具有什么意义。   按照相对性原理的要求,能量守恒定律不仅对于坐标系K是成立的,而且对于每一个相对于K作匀速平移运动的坐标系K’也应当是成立的,或简言之,对于每一个“伽利略”坐标系都应该能够成立,与经典力学不同,从一个这样的坐标系过渡到另一个这样的坐标系时,洛伦兹变换是决定性的因素。   通过较为简单的探讨,我们就可以根据这些前提并结合麦克斯韦电动力学的基本方程得出以下结论,若一物体以速度v运动,以吸收辐射的形式吸收了相当的能量E0,在此过程中并不变更它的速度,则该物体因吸收而增加的能量将为   考虑上述的物体动能表示式,就得到所求的物体的能量为   这样,该物体所具有的能量就与一个质量为并以速度U运动的物体所具有的能量一样。因此我们可以说。若一物体吸收能量E0,则其惯性质量亦应增加一个的量;可见物体的惯性质量并不是一个恒量,而是随物体的能量的改变而改变的。甚至可以认为一个物系的惯性质量就是它的能量的量度,于是一个物系的质量守恒定律与能量守恒定律就成为同一的了,而且这质量守恒定律只有在该物系既不吸收也下放出能量的情况下才是正确的。现在将能量的表示式写成如下形式   我们看到,一直在吸引我们注意的只不过是物体在吸收能量E0以前原来具有的能量。   目前(指1920年;见本节末尾附注)要将这个关系式与实验直接比较是不可能的,因为我们还不能够使一个物系发生的能量变化E0大到足以使所引起的惯性质量变化达到可以观察的程度。与能量发生变化前已存在的质量m相比,是太小了。由于这种情况,经典力学才能够将质量守恒确立为一个具有独立有效性的定律。   最后让我就一个基本问题再说几句话。电磁超距作用的法拉第-麦克斯韦解释所获得的成功使物理学家确信,象牛顿万有引力定律类型的那种(不涉及中介媒质的)瞬时超距作用是没有的。按照相对论,我们总是用以光速传播的超距作用来代替瞬时超距作用(亦即以无限大速度传播的超距作用)。这点与速度c在相对论中起着重要作用的事实有关,在本书第二部分我们将会看到广义相对论如何修改了这一个结果。   16.经验和狭义相对论   狭义相对论在多大的程度上得到经验的支持呢?这个问题是不容易回答的,不容易回答的理由已经在叙述斐索的重要实验时讲过了。狭义相对论是从麦克斯韦和洛伦兹关于电磁现象的理论中衍化出来的。因此,所有支持电磁理论的经验事实也都支持相对论。在这里我要提一下具有特别重要意义的一个事实,即相对论使我们能够预示地球对恒星的相对运动对于从恒星传到我们这里的光所产生的效应,这些结果是以极简单的方式获得的,而所预示的效应已判明是与经验相符合的。我们所指的是地球绕日运动所引起的恒星视位置的周年运动(光行差),以及恒星对地球的相对运动的径向分量对于从这些恒星传到我们这里的光的颜色的影响。后一个效应表现为,从恒星传播到我们这里的光的光谱线的位置与在地球上的光源所产生的相同的光谱线的位置相比确有微小的移动(多普勒原理)。支持麦克斯韦-洛伦兹理论同时也是支持相对论的实验论据多得不胜枚举。实际上这些论据对理论的可能性的限制己达到了只有麦克斯韦和洛伦兹的理论才能经得起经验的检验的程度。   但是有两类已获得的实验事实直到现在为止只有在引进一个辅助假设后才能用麦克斯韦-洛伦兹的理论来表示,而这个辅助假设就其本身而论(亦即如果不引用相对论的话)似乎是不能与麦克斯韦-洛伦兹理论联系在一起的。   大家知道,阴极射线和放射性物质发射出来的所谓β射线是由惯性很小速度相当大的带负电的粒于(电子)构成的。考察一下此类射线在电场和磁场影响下的偏斜,我们就能够很精确地研究这些粒子的运动定律。   在对这些电子进行理论描述时,我们遇到了困难,即电动力学理论本身不能解释电子的本性。因为由于同号的电质量相互排斥,构成电子的负的电质量在其本身相互排斥的影响下就必然会离散,否则一定存在着另外一种力作用于它们之间,但这种力的本性到目前为止我们还未清楚。如果我们假定构成电子的电质量相互之间的相对距离在电于运动的过程中保持不变(即经典力学中所说的刚性连接),那么我们就会得出一个与经验不相符合的电子运动定律。洛伦兹是根据纯粹的形式观点引进下述假设的第一人,他假设电子的外形由于电子运动的缘故而在运动的方向发生收缩,收缩的长度与成正比这个没有被任何电动力学事实所证明的假设却给了我们一个在近年来以相当高的精确度得到证实的特别的运动定律。   相对论也导致了同样的运动定律,而无需借助于关于电子的结构和行为的任何特别假设。我们在第13节叙述斐索的实验时也得出了相似的结论,相对论预言了这个实验的结果,而无需引用关于液体的物理本性的假设。   我们所指的第二类事实涉及这样的问题,即地球在空间中的运动能否用在地球上所做的实验来观察。我们已在第5节谈过,所有这类企图都导致了否定的结果。在相对论提出以前,人们很难接受这个否定的结果,我们现在来讨论一下难以接受的原因。对于时间和空间的传统偏见不容许对伽利略变换在从一个参考物体变换到另一个参考物体中所占有的首要地位产生任何怀疑。设麦克斯韦一洛伦兹方程对于一个参考物体K是成立的,那么如果假定坐标系K和相对于K作匀速运动的坐标系K’之间存在着伽利略变换关系,我们就会发现这些方程对于K’不能成立。由此看来,在所有的伽利略坐标系中。必然有一个对应于一种特别运动状态的坐标系(K)具有物理的唯一性,过去对这个结果的物理解释是,K相对于假设的空间中的以太是静止的,另一方面,所有相对于K运动着的坐标系K’就被认为都是在相对于以太运动着,因此,曾假定为对于K'够成立的运动定律所以比较复杂是由于K'相对于以太运动(相对于K’的“以大漂移”)之故。严格他说,应该假定这样的以大漂移相对于地球也是存在的。因此,长期以来,物理学家们对于企图探测地球表面上是否存在着以太漂移的工作曾付出很大努力。   这些企图中最值得注意的一种是迈克耳孙听设计的方法,看来这方法好象必然会具有决定性的意义。设想在一个刚体上安放两面镜子,使这两面镜子的反光面相互面对如果整个系统相对于以大保持静止,那么光线从一面镜子射到另一面镜子然后再返回就需要一个完全确定的时间T。但根据计算推出,如果该刚体连同镜子相对于以太是在运动着的话,则上述过程就需要一个略微不同的时间T'。还有一点:计算表明,若相对于以太运动的速度规定力同一速度v,则物体垂直于镜子平面运动时的T'又将与运动平行于镜子平面对的T'不相同.虽然计算出来的这两个时间的差别极其微小。不过在迈克耳孙和莫雷所作的利用光的干涉的实验中,这两个时间的差别应该还是能够清楚地观察得到的,但是他们的实验却得出了完全否定的结果。这是一件使物理学家感到极难理解的事情。洛伦兹和斐兹杰惹曾经从这种困难的局面中把理论解救出来:他们的解法是假定物体相对于以大的运动能使物体沿运动的方向发生收缩,而其收缩量恰好足以补偿上面提到的时间上的差别。若与第12节的论述相比较,可以指出:从相对论的观点来看,这种解决困难的方法也是对的。但是若以相对论为基础,则其解释的方法远远要更为令人满意。按照相对论,并没有“特别优越的”(唯一的)坐标系这样的东西可以用来作为引进以太观念的理由,因此不可能有什么以大漂移,也不可能有用以演示以太漂移的任何实验,在这里运动物体的收缩是完全从相对论的两个基本原理推出来的,并不需要引进任何特定假设;至于造成这种收缩的首要因素,我们发现,并不是运动本身(对于运动本身我们不能赋予任何意义),而是对于参考物体的相对运动——这一参考物体是在具体实例中适当选定的。例如,对于一个与地球一起运动的坐标系而言,迈克耳孙和莫雷的镜子系统井没有缩短,但是对于一个相对于太阳保持静止的坐标系而言,这个镜子系统确是缩短了。   17.闵可夫斯基四维空间   一个人如果不是数学家,当他听到“四维”的事物时,会激发一种象想起神怪事物时所产生的感觉而惊异起来。可是。我们所居住的世界是一个四维空时连续区这句话却是再平凡不过的说法。   空间是一个三维连续区,这句话的意思是,我们可以用三个数(坐标)x,y,z来描述一个(静止的)点的位置,并且在该点的邻近处可以有无限多个点,这些点的位置可以用诸如x1,y1,z1的坐标来描述,这些坐标的值与第一个点的坐标x,y,z,的相应的值要多么近就可以有多么近。由于后一个性质所以我们说这一整个区域是个“连续区”由于有三个坐标,所以我们说它是“三维”的。   与此相似,闵可夫斯基(Minkowski)简称为“世界”的物理现象的世界,就空-时观而言,自然就是四维的。因为物理现象的世界是由各个事件组成的,而每一个事件又是由四个数来描述的,这四个数就是三个空间坐标x,y,z和一个时间坐标——时间量值t。具有这个意义的“世界”也是一个连续区;因为对于每一个事件而言,其“邻近”的事件(已感觉到的或至少可设想到的)我们愿意选取多少就有多少,这些事件的坐标x1,y1,z1,t1与最初考虑的事件的坐标x,y,z,t相差按照经典力学来看,时间是绝对的,亦即时间与坐标系的位置和运动状态无关,我们知道,这一点已在伽利略变换的最后一个方程中表示出来(t'=t)。   在相对论中,用四维方式来考察这个“世界”是很自然的,因为按照相对论时间已经失去了它的独立性。这己由洛伦兹变换的第四方程表明:   还有,按照这个方程,甚至在两事件相对于K的时间差△t等于零的时候,该两事件相对于K’的时间差一般也不等于零。两事件相对于K的纯粹的“空间距离”成为该两事件相对于K'的“时间距离”。但是,对于相对论的公式推导具有重要作用的闵可夫斯基的发现并不在此。而是在他所认识到的这样的一个事实,即相对论的四维空时连续区在其最主要的形式性质方面与欧几里得几何空间的三维连续区有着明显的关系,但是,为了使这个关系所应有的重要地位得以表现出来,我们必须引用一个与通常的时间坐标:成正比的虚量来代换这个通常的时间坐标。在这种情况下,满足(狭义)相对论要求的自然界定律取这样的数学形式,其中时间坐标的作用与三个空间坐标的作用完全一样。在形式上。这四个坐标就与欧几里得几何学中的三个空间坐标完全相当。甚至不是数学家也必然会清楚地看到,由于补充了此种纯粹形式上的知识,使相对论能为人们明了的程度增进不少。   这些不充分的叙述只能使读者对于闵可夫斯基所贡献的重要观念有一个模糊的概念,没有这个观念,广义相对论(其基本观念将在本书下一部分加以阐述)恐怕就无法成长。闵可夫斯基的学说对于不熟悉数学的人来说无疑是难于接受的,但是,要理解狭义或广义相对论的基本观念并不需要十分精确地理解闵可夫斯基的学说,所以目前我就谈到这里为止。而只在本书第二部分将近结束的地方再谈它一下。 第二部分 广义相对论   18.狭义和广义相对性原理   作为我们以前全部论述的中心的一个基本原理是狭义相对性原理,亦即一切匀速运动具有物理相对性的原理。让我们再一次仔细地分析它的意义。   从我们由狭义相对性原理所接受的观念来看,每一种运动都只能被认为是相对运动,这一点一直是很清楚的。回到我们经常引用的路基和车厢的例子,我们可以用下列两种方式来表述这里所发生的运动,这两种表述方式是同样合理的:   (1)车厢相对于路基而言是运动的。   (2)路基相对于车厢而言是运动的。   我们在表述所发生的运动时,在以)中是把路基当作参考物体;在(2)中是把车厢当作参考物体。如果问题仅仅是要探侧或者描述这个运动而已,那么我们相对于哪一个参考物体来考察这一运动在原则上是无关重要的。前面已经提到,这一点是自明的,但是这一点决不可同我们已经用来作为研究的基础的。称之为“相对性原理”的更加广泛得多的陈述混淆起来。   我们所引用的原理不仅认为我们可以选取车厢也可以选取路基作为我们的参考物体来描述任何事件(因为这也是自明的)。我们的原理所断言的乃是:如果我们表述从经验得来的普遍的自然界定律时引用   (1)路基作为参考物体,   (2)车厢作为参考物体,   那么这些普遍的自然界定律(例如力学诸定律或真空中光的传播定律)在这两种情况中的形式完全一样。这一点也可以表述如下:对于自然过程的物理描述而言,在参考物体K,K'中没有一个与另一个相比是唯一的(字面意义是“特别标出的”),与第一个陈述不同,后一个陈述并下一定是根据推论必然成立的;这个陈述并不包含在“运动”和“参考物体”的概念中,也不能从这些概念推导出来:唯有经验才能确定这个陈述是正确的还是不正确的。   但是,到目前为止,我们根本没有认定所有参考物体K在表述自然界定律方面具有等效性。我们的思路主要是沿着下列路线走的。首先我们从这样的假定出发,即存在着一个参考物体K,它所具有的运动状态使伽利略定律对于它而言是成立的:一质点若不受外界作用并离所有其他质点足够远。则该质点沿直线作匀速运动。参照K(伽利略参考物体)表述的自然界定律应该是最简单的。但是除K以外,参照所有参考物体K’表述的自然界定律也应该是最简单的,而且,只要这些参考物体相对于K是处于匀速直线无转动运动状态。这些参考物体对于表述自然界定律应该与K完全等效;所有这些参考物体都应认为是伽利略参考物体,以往我们假定相对性原理只是对于这些参考物体才是有效的,而对于其他参考物体(例如具有另一种运动状态的参考物体)则是无效的。在这个意义上我们说它是狭义相对性原理或狭义相对论。   与此对比,我们把“广义相对性原理”理解为下述陈述:所有参考物体K、K'等不论它们的运动状态如何,对于描述自然现象(表述普遍的自然界定律)都是等效的。但是在我们继续谈下去以前应该指出,这一陈述在以后必须代之以一个更力抽象的陈述,其理由要等到以后才会明白,   由于已经证明引进狭义相对性原理是合理的,因而每一个追求普遍化结果的人必然很想朝着广义相对性原理探索前进。但是从一种简单而表面上颇为可靠的考虑看来,似乎至少就目前而论这样一种企图是没有多少成功的希望的。让我们转回到我们的旧相识,匀速向前行驶的火车车厢,来设想一番。只要车厢作匀速运动,车厢里的人就不会感到车厢的运动。由于这个理由,他可以毫不勉强地作这样的解释,即这个例子表明车厢是静止的,而路基是运动的。而且,按照狭义相对性原理,这种解释从物理观点来看也是十分合理的。   如果车厢的运动变为非匀速运动,例如使用制动器猛然煞车,那么车厢里的人就经验到一种相应的朝向前方的猛烈冲动。这种减速运动由物体相对于车厢里的人的力学行为表现出来。这种力学行为与上述的例子里的力学行为是不同的;因此,对于静止的或作匀速运动的车厢能成立的力学定律,看来不可能对于作非匀速运动的车厢也同样成立。无论如何,伽利略定律对于作非匀速运动的车厢显然是不成立的。由于这个原因,我们感到在目前不得不暂时采取与广义相对性原理相反的做法而特别赋予非匀速运动以一种绝对的物理实在性。但是在下面我们不久就会看到,这个结论是不能成立的。   19.引力场   “如果我拾起一块石头,然后放开手,为什么石块会落到地上呢?”通常对于这个问题的回答是:“因为石块受地球吸引。”现代物理学所表述的回答则不大一样,其理由如下。对电磁现象更仔细地加以研究,使我们得出这样的看法,即如果没有某种中介媒质在其间起作用,超距作用这种过程是不可能的。例如,磁铁吸铁,如果认为这就是意味着磁铁通过中间的一无所有的空间直接作用于铁块,我们是不能感到满意的;我们不得不按照法拉第的方法,设想磁铁总是在其周围的空间产生某种具有物理实在性的东西,这种东西就是我们所称的“磁场”,而这个磁场又作用于铁块上,使铁块力求朝着磁铁移动;我们不在这里讨论这个枝节性的概念是否合理,这个概念的确是有些任意的。我们只提一下,借助于这个概念,电磁现象的理论表述要比不借助于这个概念满意得多,而对于电磁波的传播尤其如此。我们也可以用相似的方式来看待引力的效应   地球对石块的作用不是直接的。地球柱其周围产生一引力场,引力场作用于石块,引起石块的下落运动。我们从经验得知,当我们离地球越来越远时,地球对物体的作用的强度按照一个十分确定的定律减小,从我们的观点来看,这意味着:为了正确表述引力作用如何随着物体与受作用物体的距离的增加而减小,支配空间引力场的性质的定律必须是一个完全确定的定律。大体上可以这样说:物体(例如地球)在其最邻近处直接产生一个场;场在离开物体的各点的强度和方向就由支配引力场本身的空间性质的定律确定。   与电场和磁场对比,引力场显示出一种十分显著的性质,这种性质对于下面的论述具有很重要的意义。在一个引力场的唯一影响下运动着的物体得到了一个加速度,这个加速度与物体的材料和物理状态都毫无关系。例如,一块铅和一块木头在一个引力场中如果都是从静止状态或以同样的初速开始下落的,它们下落的方式就完全相同(在真空中)。这个非常精确的定律可以根据丁述考虑以一种不同的形式来表述。   按照牛顿运动定律,我们有     (力)=(惯性质量)×(加速度)   其中“惯性质量”是被加速的物体的一个特征恒量。如果引力是加速度的起因,我们就有     (力)=(引力质量)×(引力场强度)   其中“引力质量”同样是物体的一个特征恒量。从这两个关系式得出。     (加速度)=(引力质量)/(惯性质量)×(引力场强度)   如果正如我们从经验中所发现的那样,加速度是与物体的本性和状况无关的,而且在同一个引力场强度下,加速度总是一样的,那么引力质量与惯性质量之比对于一切物体而言也必然是一样的。适当地选取单位,我们就可以使这个比等于一。因而我们就得出下述定律:物体的引力质量等于其惯性质量。   这个重要的定律过去确实已经记载在力学中,但是并没有得到解释。我们唯有承认一个事实才能得到满意的解释,这个事实就是:物体的同一个性质按照不同的处境或表现为“惯性”,或表现力“重量”(字面意义是“重性”)。在下节我们将说明这个情况真实到如何程度,以及这个问题与广义相对性公设是如何联系起来的。   20.惯性质量和引力质量相等是广义相对性公设的一个论据   我们设想在一无所有的空间中有一个相当大的部分,这里距离众星及其他可以感知的质量非常遥远,可以说我们已经近似地有了伽利略基本定律所要求的条件,这样就有可能力这部分空间(世界)选取一个伽利略参考物体,使对之处于静止状态的点继续保持静止状态,而对之作相对运动的点永远继续作匀速直线运动,我们设想把一个象一向房子似的极宽大的箱子当作参考物体,里面安置一个配备有仪器的观察者。对于这个观察者而言引力当然并不存在,他必须用绳子把自己拴在地板上,否则他只要轻轻碰一下地板就会朝着房子的天花板慢慢地浮起来。   在箱子盖外面的当中,安装了一个钩子,钩上系有缆索。现在又设想有一“生物”(是何种生物对我们来说无关重要)开始以恒力拉这根缆索。于是箱于连同观察者就要开始作匀加速运动“上升”。经过一段时间,它们的速度将会达到前所未闻的高值——倘若我们从另一个未用绳牵的参考物体来继续;观察这一切的话。   但是箱子里的人会如何看待这个过程呢?箱子的加速度要通过箱子地板的反作用才能传给他。所以,如果他不愿意整个人卧倒在地板上,他就必须用他的腿来承受这个压力。因此,他站立在箱于里实际上与站立在地球上的一个房间里完全一样。如果他松手放开原来拿在手里的一个物体,箱子的加速度就不会再传到这个物体上,因而这个物体就必然作加速相对运动而落到箱于的地板上,观察者将会进一步断定。物体朝向箱于的地板的加速度总是有相同的量值。不论他碰巧用来做实验的物体为何,   依靠他对引力场的知识(如同在前节所讨论的),箱子里的人将会得出这样一个结论:他自己以及箱于是处在一个引力场中,而且该引力场对于时间而言是恒定不变的,当然他会一时感到迷惑不解为什么箱子在这个引力场中并不降落但是正在这个时候他发现箱盖的当中有一个钩子,钩上系着缆索;因此他就得出结论,箱子是静止地悬挂在引力场中的。   我们是否应该讥笑这个人,说他的结论错了呢,如果我们要保持前后一致的话,我认为我们不应该这样说他;我们反而必须承认,他的思想方法既不违反理性,也不违反已知的力学定律。虽然我们先认定为箱子相对于“伽利略空间”在作加速运动,但是也仍然能够认定箱于是在静止中。因此我们确有充分理由可以将相对性原理推广到把相互作加速运动的参考物体也能包括进去的地步,因而对于相对性公设的推广也就获得了一个强有力的论据。   我们必须充分注意到,这种解释方式的可能性是以引力场使一切物体得到同样的加速度这一基本性质为基础的;这也就等于说,是以惯性质量和引力质量相等的这一定律力基础的。如果这个自然律不存在,处在作加速运动的箱于里的人就不能先假定出一个引力场来解释他周围物体的行为,他就没有理由根据经验假定他的参考物体是“静止的” 假定箱子里的人在箱子盖内面系一根绳子,然后在绳子的自由端拴上一个物体,结果绳子受到伸张,“竖直地”悬垂着该物体。如果我们问一下绳子上产生张力的原因,箱子里的人就会说:“悬垂着的物体在引力场中受到一向下的力,此力为绳子的张力所平衡;决定绳子张力的大小的是悬垂着的物体的引力质量。”另一方面,自由地稳定在空中的一个观察者将会这样解释这个情况:“绳子势必参与箱子的加速运动,并将此运动传给拴在绳于上的物体。绳子的张力的大小恰好足以引起物体的加速度。决定绳子的张力的大小的是物体的惯性质量。”我们从这个例子看到,我们对相对性原理的推广隐含着惯性质量和引力质量相等这一定律的必然性。这样我们就得到了这个定律的一个物理解释。   根据我们对作加速运动的箱子的讨论,我们看到,一个广义的相对论必然会对引力诸定律产生重要的结果。事实上。对广义相对性观念的系统研究已经补充了好些定律为引力场所满足。但是,在继续谈下去以前,我必须提醒读者不要接受这些论述中所隐含的一个错误概念。对于箱子里的人而言存在着一个引力场,尽管对于最初选定的坐标系而言并没有这样的场。于是我们可能会轻易地假定,引力场的存在永远只是一种表观的存在。我们也可能认为,不论存在着什么样的引力场,我们总是能够这样选取另外一个参考物体,使得对于该参考物体而言没有引力场存在,这绝对不是对于所有的引力场都是真实的,这仅仅是对于那些具有十分特殊的形式的引力场才是真实的。例如,我们不可能这样选取一个参考物体,使得由该参考物体来判断地球的引力场(就其整体而言)会等于;   现在我们可以认识到,为什么我们在第18节末尾所叙述的观察者由于煞车而经验到一种朝向前方的冲动,并由此察觉车厢的非匀速运动(阻滞),这一点当然是真实的。但是谁也没有强迫他把这种冲动归因于车厢的“实在的”加速度(阻滞),他也可以这样解释他的经验:“我的参考物体(车厢)一直保持静止。但是,对于这个参考物体存在着(在煞车期间)一个方向向前而且对于时间而言是可变的引力场,在这个场的影响下,路基连同地球以这样的万率作非匀速运动,即它们的向后的原有速度是在不断地减小下去。”   21.经典力学的基础和狭义相对论的基础在哪些方面不能令人满意   我们已经说过几次,经典力学是从下述定律出发的:离其他质点足够远的质点继续作匀速直线运动或继续保持静止状态。我们也曾一再强调,这个基本定律只有对于这样一些参考物体K才有效,这些参考物体具有某些特别的运动状态并相对作匀速平移运动。相对于其他参考物体K',这个定律就失效。所以我们的经典力学中和在狭义相对论中都把参考物体K和参考物体K'区分开;相对于参考物体K,公认的“自然界定律”可以说是成立的,而相对于参考物体K'则这些定律并不成立。   但是,凡是思想方法合乎逻辑的人谁也不会满足于此种情形。他要问:“为什么要认定某些参考物体(或它们的运动状态)比其他参考物体(或它们的运动状态)优越呢,此种偏爱的理由何在?”为了讲清楚我提出这个问题是什么意思,我来打一个比方。   比方我站在一个煤气灶前面。灶上并排放着两个平底锅。这两个锅非常相象,常常会认错。里面都盛着半锅水。我注意到一个锅不断冒出蒸气,而另一个锅则没有蒸气冒出。即使我以前从来没有见过煤气灶或者平底锅,我也会对这种情况感到奇怪。但是如果在这个时候我注意到在第一个锅底下有一种蓝色的发光的东西,而在另一个锅底下则没有,那么我就下会再感到惊奇,即使以前我来没有见过煤气的火焰。因为我只要说是这种蓝色的东西使得锅里冒出蒸气,或者至少可以说有这种可能,但是如果我注意到这两个锅底下都没有什么蓝色的东西,而且如果我还观察到其中一个锅不断冒出蒸气,而另外一个锅则没有蒸气,那么我就总是感到惊奇和不满足,直到我发现某种情况能够用来说明为什么这两个锅有不同的表现为止。与此类似,我在经典力学中(或在狭义相对论中)找下到什么实在的东西能够用来说明为什么相对于参考系K和K'来考虑时物体会有不同的表现。牛顿看到了这个缺陷,并曾试图消除它,但没有成功。只有马赫对它看得最清楚,由于这个缺陷他宣称必须把力学放在一个新的基础上,只有借助于与广义相对性原理一致的物理学才能消除这个缺陷,因为这样的理论的方程,对于一切参考物体,不论其运动状态如何,都是成立的。   22.广义相对性原理的几个推论   第20节的论述表明,广义相对性原理能够使我们以纯理论方式推出引力场的性质。例如,假定我们已经知道任一自然过程在伽利略区域中相对于一个伽利略参考物体K如何发生,亦即已经知道该自然过程的空时“进程”,借助于纯理论运算(亦即单凭计算),我们就能够断定这个已知自然过程从一个相对于K作加速运动的参考物体K'去观察,是如何表现的,但是由于对字这个薪的参考物体K'而言存在着一个引力场,所以以上的考虑也告诉我们引力场如何影响所研究的过程。   例如,我们知道,相对于K(按照伽利略定律)作匀速直线运动的一个物体,它相对于作加速运动的参考物体K'(箱子)是在作加速运动的,一般还是在作曲线运动的。此种加速度或曲率相当于相对于K’存在的引力场对运动物体的影响。引力场以此种方式影响物体的运动是大家已经知道的,因此以上的考虑并没有为我们提供任何本质上新的结果。   但是,如果我们对一道光线进行类似的考虑就得到一个新的具有基本重要性的结果。相对于伽利略参考物体K,这样的一道光线是沿直线以速度c传播的。不难证明,当我们相对于作加速运动的箱子(参考物体K')来考察这同一道光线时,它的路线就不再是一条直线。由此我们得出结论,光线在引力场中一般沿曲线传播。这个结果在两个方面具有重要意义。   首先这个结果可以同实际比较,虽然对这个问题的详细研究表明,按照广义相对论,光线穿过我们在实践中能够加以利用的引力场时,只有极其微小的曲率;但是,以掠入射方式经过太阳的光线,其曲率的估计值达到1.7"这应该以下述方式表现出来。从地球上观察,某些恒星看来是在太阳的邻近处,因此这些恒星能够在日全食时加以观测。这些恒星当日全食时在天空的视位置与它们当太阳位于天空的其他部位时的视位置相比较应该偏离太阳,偏离的数值如上所示。检验这个推断正确与否是一个极其重要的问题,希望天文学家能够早日予以解决。   其次,我们的结果表明,按照广义相对论,我们时常提到的作为狭义相对沦中两个基本假定之一的真空中光速恒定定律,就不能彼认为具有无限的有效性,光线的弯曲只有在光的传播速度随位置而改变时才能发生。我们或许会想,由于这种情况,狭义相对论以及随之整个相对论,都要化力灰烬了。但实际上并不是这样,我们只能作这样的结论:不能认为狭义相对论的有效性是无止境的;只有在我们能够不考虑引力场对现象(例如光的现象)的影响时,狭义相对论的结果才能成立。   由于反对相对论的人时常说狭义相对论被广义相对论推翻了,因此用一个适当的比方来把这个问题的实质弄得更清楚些也许是允当的。在电动力学发展前,静电学定律被看作是电学定律。现在我们知道,只有在电质量相互之间井相对于坐标系完全保持静止的情况下(这种情况是永远不会严格实现的),才能够从静电学的考虑出发正确地推导出电场。我们是否可以说,由于这个理由,静电学被电动力学的麦克斯韦场方程推翻了呢?绝对不可以。静电学作为一个极限情况包含在电动力学中;在场不随时间而改变的情况下,电动力学的定律就直接得出静电学的定律。任何物理理论都不会获得比这更好的命运了,即一个理论本身指出创立一个更力全面的理论的道路,而在这个更为全面的理论中,原来的理论作为一个极限情况继续存在下去。   在刚才讨论的关于光的传播的例子中,我们已经看到,广义相对论使我们能够从理论上推导引力场对自然过程的进程的影响,这些自然过程的定律在没有引力场时是已知的。但是,广义相对论对其解决提供了钥匙的最令人注意的问题乃是关于对引力场本身所满足的定律的研究,让我们对此稍微考虑一下。   我们已经熟悉了经过适当选取参考物体后处于(近似地)“伽利略”形式的那种空时区域,亦即没有引力场的区域,如果我们相对于一个不论作何种运动的参考物体K’来考察这样的一个区域,那么相对于K'就存在着一个引力场,该引力场对于空间和时间是可变的。这个场的特性当然取决于为K'。选定的运动。按照广义相对论;普遍的引力场定律对于所有能够按这一方式得到的引力场都必须被满足,虽然绝不是所有的引力场都能够如此产生,我们仍然可以希望普遍的引力定律能够从这样的一些特殊的引力场推导出来。这个希望已经以极其美妙的方式实现了,但是从认清这个目标到完全实现它,是经过克服了一个严重的困难之后才达到的,由于这个问题具有很深刻的意义,我不敢对读者略而下谈,我们需要进一步推广我们对于空时连续区的观念。   23.在转动的参考物体上的钟和量杆的行为   到目前为止,我在广义相对论中故意避而不谈空间数据和时间数据的物理解释。因而我在论述中犯了一些潦草从事的毛病;我们从狭义相对论知道,这种毛病决不是无关重要和可以宽容的。现在是我们弥补这个缺陷的最适当的时候了;但是开头我就要提一下,这个问题对读者的忍耐力和抽象能力会提出不小的要求。   我们还是从以前常常引用的十分特殊的情况开始,让我们考虑一个空时区域,在这里相对于一个参考物体K(其运动状态己适当选定)不存在引力场。这样,对于所考虑的区域而言,K就是一个伽利略参考物体,而且狭义相对论的结果对于K而言是成立的。我们假定参照另一个参考物体K'来考察同一个区域。   设K',相对于K作匀速转动。为了使我们的观念确定,我们设想K',具有一个平面圆盘的形式,这个平面圆盘在其本身的平面内围绕其中心作匀速转动。在圆盘K'上离开盘心而坐的一个观察者感受到沿径向向外作用阶一个力;相对于原来的参考物体K保持静止的一个观察者就会把这个力解释为一种惯性效应(离心力)。但是,坐在圆盘上的观察者可以把他的圆盘当作一个“静止”的参考物体;根据广义相对性原理,他这样设想是正当的。他把作用在他身上的、而且事实上作用于所有其他相对于圆盘保持静止的物体的力,看作是一个引力场的效应;然而,这个引力场的空间分布,按照牛顿的引力理论,看来是不可能的。但是由于这个观察者相信广义相对论,所以这一点对他并无妨碍;他颇有正当的理由相信能够建立起一个普遍的引力定律——这一个普遍的引力定律不仅可以正确地解释众星的运动,而且可以解释观察者自己所经验到的力场。   这个观察者在他的圆盘上用钟和量杆做实验。他这样做的意图是要得出确切的定义来表达相对于圆盘K’的时间数据和空间数据的含义,这些定义是以他的观察为基础的,这样做他会得到什么经验呢?   首先他取构造完全相同的两个钟,一个放在圆盘的中心,另一个放在圆盘的边缘。因而这两个钟相对于圆盘是保持静止的。我们现在来问问我们自己,从非转动的伽利略参考物体的立场来看,这两个钟是否走得快慢一样:从这个参考物体去判断,放在圆盘中心的钟并没有速度,而由于圆盘的转动,放在圆盘边缘的钟相对于K是运动的。按照第12节得出的结果可知,第二个钟永远比放在圆盘中心的钟走得慢,亦即从K去观察,情况就会这样。显然,我们设想坐在圆盘中心那个钟旁边的一个观察者也会观察到同样的效应,因此;在我们的圆上,或者把情况说得更普遍一些,在每一个引力场中,一个钟走得快些或者慢些,要着这个钟(静止地)所放的位置如何。由于这个缘故,要借助于相对于参考物体静止地放置的钟来得出合理的时间定义是不可能的。我们想要在这样一个例子中引用我们早先的同时性定义时也遇到了同样的困难,但是我不想再进一步讨论这个问题了。   此外,在这个阶段,空间坐标的定义也出现不可克服的困难,如果这个观察者引用他的标准量杆(与圆盘半径相比,一根相当短的杆),放在圆盘的边上并使杆与圆盘相切,那么,从伽利略坐标系去判断,这根杆的长度就小于1,因为,按照第12节,运动的物体在运动的方向发生收缩。另一方面,如果把量杆沿半径方向放在圆盘上,从K去判断,量杆不会缩短。那么,如果这个观察者用他的量杆先量度圆盘的圆周,然后量度圆盘的直径,两者相除,他所得到的商将不会是大家熟知的数π=3.14…,而是一个大一些的数;而对于一个相对于K保持静止的圆盘,这个操作和运算当然就会准确地得出π。这证明,在转动的圆盘上,或者普遍他说,在一个引力场中,欧几里得几何学的命题并不能严格地成立,至少是如果我们把量杆在一切位置和每一个取向的长度都算作1的话,因而关于直线的观念也就失去了意义:所以我们不能借助于在讨论狭义相对论时所使用的方法相对于圆盘严格地来了坐标x,y,z的定义;而只要事件的坐标和时间的定义还没有给出,我们就不能赋予(在其中出现这些事件的)任何自然律以严格的意义。   这样,所有我们以前根据广义相对论得出的结论看来也就有问题。在实际情况中我们必须作一个巧妙的迂回才能够严格地应用广义相对论的公设。下面我将帮助读者对此作好准备。   24. 欧几里得和非欧几里得连续区域   一张大理石桌摆在我的面前,眼前展开了巨大的桌面。在这个桌面上,我可以这样地从任何一点到达任何其他一点,即连续地从一点移动到“邻近的”一点,井重复这个过程若干(许多)次,换言之,亦即无需从一点“跳跃”到另一点,我想读者一定会足够清楚地了解我这里所说的“邻近的”和“跳跃”是什么意思(如果他不过于咬文嚼字的话).我们把桌面描述为一个连续区来表示桌面的上述性质。   我们设想已经做好了许多长度相等的小杆,它们的长度同这块大理石板的大小相比是相当短的。我说它们的长度相等的意思是,把其中之一与任何其他一个适合起来,它们的两端都能彼此重合,其次我们取四根小杆放在石板上,构成一个四边形(正方形),这个四边形的对角线的长度是相等的,为了保证对角线相等,我们另外用了一根小测杆。我们把几个同样的正方形加到这个正方形上,加上的正方形每一个都有一根杆是与第一个正方形共用的。我们对于这些正方形的每一个都采取同样的做法,直到最后整块石板都铺满了正方形为止。这个排列是这样的,一个正方形的每一边都隶属于两个正方形,每一个隅角都隶属于四个正方形。   如果我们能够把这项工作做好而没有遇到极大的困难,那只要三个正方形相会于一隅角,那么第四个正方形的两个边就已经摆出;因此,这个正方形下余两边的排列位置也就已经完全确定下来,但是这个时候我就不能再调整这个四边形使它的两根对角线相等了.如果这两根对角线出于它们的自愿而相等,那么这是石板和小杆的特别恩赐,对此我只能怀着感激的心情而惊奇不己。如果这个作同法能够成功的话:那么这种令人惊奇的事情我们必然会经验到许多次。   如果凡事都进行得真正顺利,那么我就说石板上的诸点对于小杆而言构成一个欧几里得连续区域,这里小杆曾当作“距离”(线间隔)使用。选取一个正方形的一个隅角作为“原点”我就能够用两个数来表示任一正方形的任一隅角相对于这个原点的位置。我只须说明,我从原点出发,向“右”走然后向“上”走,必须经过多少根杆子才能到达所考虑的正方形的隅角。这两个数就是这个隅角相对于由排列小杆而确定的“笛卡儿坐标系”的“笛卡儿坐标”。   如果将这个抽象的实验作如下改变,我们就会认识到一定会出现这种实验下能成功的情况。我们假定这些杆于是会:“膨胀”的,膨胀的量值与温度升高的量值成正比。我们将石板的中心部分加热,但周围不加热,在这个情况下,我们仍然能够使两根小杆在桌面上的每一个位置上相互重合。但是在加热期间我们的正方形作图就必然会受到扰乱,因为放在桌面中心部分的小杆膨胀了,而放在外围部分的小杆则不膨胀。   对于我们的小杆——定义为单位长度——而言,这块石板不再是一个欧几里得连续区,而且我们也不再能够直接借助于这些小杆来定义笛卡儿坐标,困为上述的作图法已无法实现了。但是由于有一些其他的事物并不象这些小杆那样受桌子温度的影响(或许丝毫不受影响),因而我们有可能十分自然地支持这样的观点,即这块石板仍是一个“欧几里得连续区”,为此我们必须对长度的量度或比较作一更为巧妙的约定,才能够满意地实现这个欧几里得连续区。   但是如果把各种杆子(亦即用各种材料做成的杆子)放在加热不均匀的石板上时它们对温度的反应都一样,并且如果除了杆子在与上述实验相类似的实验中的几何得为之外没有其他的方法来探测温度的疚,那么最好的办法就是:只要我们能够使杆子中一根的两端与石板上的两点相重合,我们就规定该两点之间的距离为1;因为,如果不这样做,我们又应该如何来下距离的定义才不致在极大的程度上犯粗略任意的错误呢?这样我们就必须舍弃笛卡儿坐标的方法,而代之以不承认欧几里得几何学对刚体的有效性的另一种方法。读者将会注意到,这里所描述的局面与广义相对性公设所引起的局面(第23节)是一致的。   25.高斯坐标   按照高斯的论述,这种分析方法与几何方法结合起来的处理问题的方式可由下述途径达成,设想我们在桌面上画一个任意曲线系(见图4)。   我们把这些曲线称作u曲线,并用一个数来标明每一根曲线,在图中画出了曲线u=1,u=2和u=3, 我们必须设想在曲线u=1,u=2 之间画有无限多根曲线,所有这些曲线对应于1和2之间的实数,这样我们就有一个u曲线系,而且这个“无限稠密”曲线系布满了整个桌面,这些u曲线必须彼此不相交,并且桌面上的每一点都必须有一根而且仅有一根曲线通过。因此大理石板面上的每一个点都具有一个完全确定的u值。我们设想以同样的方式在这个石板面上画一个v曲线系。这些曲线所满足的条件与u曲线相同,并以相应的方式标以数字,而且它们也同样可以具有任意的形状,因此,桌面上的每一点就有一个u值和一个v值。我们把这两个数称为桌面的坐标(高斯坐标),例如图中的P点就有高斯坐标u=3, v=1。这样,桌面上相邻两点P和P'就对应于坐标   P: u,v   P':u+du,v+dv   其中du和dv标记很小的数。同样,我们可以用一个很小的数ds表示P和P'之间的距离(线间隔),好象用一根小杆测量得出的一样。于是,按照高斯的论述,我们就有   其中g11,g12,g22是以完全确定的方式取决于u和v的量。量g11,g12,g22决定小杆相对于u曲线和v曲线的行为,因而也就决定小杆相对于桌面的行为。对于所考虑的面上的诸点相对于量杆构成一个欧几里得连续区的情况,而且只有在这个情况下,我们才能够简单地按下式来画出以及用数字标出u曲线和v曲线:   在这样的条件下,u曲线和v曲线就是欧几里得几何学中的直线,并且它们是相互垂直的。在这里,高斯坐标也就成为笛卡儿坐标。显然,高斯坐标只不过是两组数与所考虑的面上的诸点的一种缔合,这种缔合具有这样的性质,即彼此相差很微小的数值各与“空间中”相邻诸点相缔合。   到目前为止,这些论述对于二维连续区是成立的。但是高斯的方法也可以应用到三维、四维或维数更多的连续区。例如,如果假定我们有一个四维连续区,我们就可以用下述方法来表示这个连续区,对于这个连续区的每一个点,我们任意地把四个数x1,x2,x3,x4与之相缔合,这四个数就称为“坐标”。相邻的点对应于相邻的坐标值。如果距离ds与相邻点P和P'相缔合,而且从物理的观点来看这个距离是可以测量的和明确规定了的,那么下述公式成立:   其中g11等量的值随连续区中的位置而变。唯有当这个连续区是一个欧几里得连续区时才有可能将坐标x1..x4与这个连续区的点简单地缔合起来,使得我们有   在这个情况下,与那些适用于我们的三维测量的关系相似的一些关系就能够适用于这个四维连续区。   但是我们在上面提出的表达ds2的高斯方法并不是经常可能的,只有当所考虑的连续区的各个足够小的区域被当作是欧几里得连续区时,这种方法才有可能。例如,就大理石桌面和局部温度变化的例子而言,这一点显然是成立的。对于石板的一小部分面积而言,温度在实际上可视为恒量;因而小杆的几何行为差不多能够符合欧几里得几何学的法则。因此,前节所述正方形作图法的缺陷要到这个作图扩展到了占桌面相当大的一部分时才会明显地表现出来。   我们可以对此总结如下:高斯发明了对一般连续区作数学表述的方法,在表述中下了“大小关系”(邻点间的“距离”)的定义。对于一个连续区的每一个点可标以若干个数(高斯坐标),这个连续区有多少维,就标多少个数。这是这样来做的:每个点上所标的数只可能有一个意义,并且相邻诸点应该用彼此相差一个无穷小量的数(高斯坐标)来标出。高斯坐标系是笛卡儿坐标系的一个逻辑推广。高斯坐标系也可以适用于非欧几里得连续区,但是只有在下述情况下才可以,即相对于既定的“大小”或“距离“的定义而言,我们所考虑的连续区的各个小的部分愈小,其表现就愈象一个真正的欧几里得系统。   26.狭义相对论的空时连续区可以当作欧几里得连续区   现在我们已有可能更严谨地表述闵可夫斯基的观念,这个观念在第17节中只是含糊地谈到一个。按照狭义相对论,要优先用某些坐标系来描述四维空时连续区。我们把这些坐标系称为“伽利略坐标系”。对于这些坐标系,确定一个事件或者换言之确定四维连续区中一个点所用的四个坐标x,y,z,t,在物理意义上具有简单的定义,这在一书第一部分已有所详述。从一个伽利略坐标过渡到相对于这个坐标系作匀速运动的另一个伽利略坐标系时,洛伦兹变换方程是完全有效的。这些洛伦兹变换方程构成了从狭义相对论导出推论的基础,而这些议程的本身也只不过是表述了光的传播定律对于一切伽利略参考系的普适有效性而已。   闵可夫斯基发现洛伦兹变换满足下述简单条件。我们考虑两个相邻事件,这两个事件在四维连续区中的相对位置,是参照伽利略参考物体K用空间坐标差dx,dy,dz和时间差dt来表示的。我们假定这两具事件参照另一个伽利略坐标系的差相应地dx',dy',dz',dt'。那么这些量总是满足条件。   洛伦兹变换的有效性就是由这个条件来确定,对此我们又可以表述如下:   属于四维空时连续区的两个相邻点的这个量   对于一切选定的(伽利略参考物体,皆具有相同的值。如果我们用x1,x2,x3,x4代换x,y,z,,我们也得出这样的结果,即   与参考物体的选取无磁疗。我们把量ds称为两个事件或两个四维点之间的“距离”。   因此,如果我们不选取实量t而先取虚变量作为时间变量,我们就可以——按照狭义相对论——把空时连续区当作一个“欧几里得”四维连续区,这个结果可以由前节的论述推出。   27.广义相对论的空时连续区不是欧几里得连续区   在本书的第一部分,我们能够使用可以对它作简单而直接的物理解释的空时坐标,而且,按照第26节,这种空时坐标可以被看作四维笛卡儿坐标:我们能够这样做,是以光速恒定定律为基础的。但是按照第21节,广义相对论不能保持这个定律。相反,按照广义相对论我们得出这样的结果,即当存在着一个引力场时,光速必须总是依赖于坐标。在第23节讨论一个具体例子时,我们发现,曾经使我们导致狭义相对论的那种坐标和时间的定义,由于引力场的存在而失效了。   鉴于这些论述的结果,我们得出这样的论断,按照广义相对论,空时连续区不能被看作一个欧几里得连续区;在这里只有相当于具有局部温度变化的大理石板的普遍情况,我们曾把它理解力一个二维连续区的例子。正如在那个例子里不可能用等长的杆构成一个笛卡儿坐标系一样,在这里也不可能用刚体和钟建立这样一个系统(参考物体),使量杆和钟在相互地作好刚性安排的情况下可用以直接指示位置和时间。这是我们在第23节中所遇到的困难的实质所在。   但是第25节和第26节的论述给我们指出了这个困难的道路。对于四维空时连续区我们可以任意利用高斯坐标来作参照。我们用四个数x1,x2,x3,x4(坐标)标出连续区的每一个点(事件),这些数没有丝毫直接的物理意义,其目的只是用一种确定而又任意的方式来标出连续区的各点。四个数的排列方法甚至无需一定要把x1,x2,x3当作“空间”坐标把x4 当作“时间”坐标。   读者可能会想到,这样一种,世界的描述是十分不够格的。如果x1,x2,x3,x4这些特定的坐标本身并无意义,那么我们用这些坐标标出一个事件又有什么意义?但是,更加仔细的探讨表明,这种担忧是没有根据的。例如我们考虑一个正在作任何运动的质点。如果这个点的存在只是瞬时的,并没有一个持续期间,那么这个点在空时中即由单独一组x1,x2,x3,x4的数值来描述。因此,如果这个点的存在是永久的,要描述这个点,这样的数值组就必须有无穷多个,而且其坐标值必须紧密到能够显示出连续性;对应于这个质点,我们就在四维连续区中有一根(一维的)线。同样,在我们的连续区中任何这样的线,必然也对应于许多运动的点,以上对于这些点的陈述中实际上只有关于它们的会合的那些陈述才称得起具有物理存在的意义。用我们的数学论述方法来说明,对于这样的会合的表述,就是两根代表所考虑的点的运动的线中各有特别的一组坐标值x1,x2,x3,x4是彼此共同的。经过深思熟虑以后,读者无疑将会承认,实际上这样的会合构成了我们在物理陈述中所遇到的具有时空性质的唯一真实证据。   当我们相对于一个参考物体描述一个质点的运动时,我们所陈述的只不过是这个点与这个参考物体的各个特定的点的会合。我们也可以借助于观察物体和钟的会合,井协同观察钟的指针和标度盘上特定的点的会合来确定相应的时间值。使用量杆进行空间测量时情况也正是这样,这一点稍加考虑就会明白。   下面的陈述是普遍成立的:每一个物理描述本身可分成许多个陈述,每一个陈述都涉及A 、B两事件的空时重合。从高斯坐标来说,每一个这样的陈述,是用两事件的四个坐标x1,x2,x3,x4相符的说法来表达的;因此实际上,使用高斯坐标所作的关于时空连续区的描述可以完全代替必须借助于一个参考物体的描述,而且不会有后一种描述方式的缺点;国为前一种描述方式不必受所描述的连续区的欧几里得特性的限制。   28.广义相对性原理的严格表述   现在我们已经有可能提出广义相对性原理的严格表述来代替第18节中的暂时表达。第18节中所用的表述形式是,“对于描述自然现象(表述普遍的自然界定律)而言,所有参考物体K、K’等都是等效的,不论它们的运动状态如何,”这个表述形式是不能够保持下去的,因为,按照狭义相对论的观念所推出的方法使用刚性参考物体作空时描述,一般说来是不可能的,必须用高斯坐标系代替参考物体。下面的陈述才与广义相对性原理的基本观念相一致:“所有的高斯坐标系对于表述普遍的自然界定律在本质上是等效的。”   我们还可以用另一种形式来陈述这个广义相对性原理。用这种形式比用狭义相对性原理的自然推广形式更加明白易懂,按照狭义相对论,当我们应用洛伦兹变换,以一个新的参考物体K’的空时变量x',y',z',t'代换一个(伽利略)参考物体K的空时变量x,y,z,t时,表述普遍的自然界定律的方程经变换后仍取同样的形式。另一方面,按照广义相对论,对高斯变量x1,x2,x3,x4应用任意代换,这些方程经变换后仍取同样的形式;因为每一种变换(不仅仅是洛伦兹变换)都相当于从一个高斯坐标系过渡到另一个高斯坐标系。   如果我们愿意固执我们“旧时代”的对事物的三维观点,那么我们就可以对广义相对论的基本观念目前发展的特点作如下的描述,狭义相对论和伽利略区域相关,亦即和其中没有引力场存在的区域相关。就此而论,一个伽利略参考物体在充当着参考物体,这个参考物体是一个刚体,其运动状态必须选择得使“孤立”质点作匀速直线运动的伽利略定律相对于这个刚体是成立的。   从某些考虑来看,我们似乎也应该把同样的伽利略区域引入于非伽利略参考物体。那么相对于这些物体就存在着一种特殊的引力场(见第20节和第28节),在引力场中,并没有象具有欧几里得性质的刚体那样的东西;因此,虚设的刚性参考物体在广义相对论中是没有用处的。钟的这动也受引力场的影响,由于这种影响,直接借助于钟而作出的关于时间的物理定义不可能达到狭义相对论中同样程度的真实感。   由于这个缘故,我们使用非刚性参考物体,这些物体整个说来不仅其运动是任意的,而且在其运动过程中可以发生任何形变。钟的运动可以遵从任何一种运动定律,不论如何不规则,但可用来确定时间的定义。我们想象每一个这样的钟是在非刚性参考物体上的某一点固定着。这些钟只满足这样的一个条件,即从(空间中)相邻的钟同时观测到的“读数”彼此仅相差一个无穷小量。这个非刚性参考物体(可以恰当地称作”软体动物参考体”)基本上相当于一个任意选定的高斯四维坐标系。与高斯坐标系比较,这个“软体动物”所具有的某些校易理解之处就是形式上保留了空间坐标和时间坐标的分立状态(这种保留实际上是不合理的).我们把这个软体动物上的每一点当作一个空间点,相对于空间点保持静止的每一个质点就当作是静止的,如果我们把这个软体动物视为参考物体的活。广义相对性原理要求所有这些软体动物都可以用作参考物体来表述普遍的自然界定律,在这方面,这些软体动物具有同等的权利,也可以取得同样好的结果;这些定律本身必须不随软体动物的选择而变易。   由于我们前面所看到的那些情况,广义相对性原理对自然界定律作了一些广泛而具明确性的限制,广义相对性原理所具有的巨大威力就在于此。   29.在广义相对性原理的基础上解引力问题   如果读者对于前面的论述已经全部理解,那么对于理解引力问题的解法,就不会再有困难。   我们从考察一个伽利略区域开始,伽利略区域就是相对于伽利略参考物体K其中没有引力场存在的一个区域。量杆和钟相对于K的行为已从狭义相对论得知,同样,“孤立”质点的行为也是已知的;后者沿直线作匀速运动。   我们现在参照作为参考物体K’的一个任意高斯坐标系或者一个“软体动物”来考察这个区域。那么相对于K',就存在着一个引力场G(一种特殊的引力场)。我们只利用数学变换来察知量杆和钟以及自由运动的质点相对于K’的行为。我们把这种行为解释力量杆、钟和质点在引力场G的影响下的行为。此处我们引进一个假设:引力场对量杆、钟和自由运动的质点的影响将按照同样的定律继续发生下去,即使当前存在着的引力场不能简单地通过坐标变换从伽利略的特殊情况推导出来。   下一步是研究引力场G的空时行为,引力场G过去是简单地通过坐标变换由伽利略的特殊情况导出的。将这种行为表述为一个定律,不论在描述中所使用的参考物体(软体动物)如何选定,这个定律始终是有效的。   然而这个定律还不是普遍的引力场定律,固为所考虑胁引力场是一种特殊的引力场。为了求出普遍的引力场定律。我们还需要将上述定律加以推广,这一推广可以根据下述要求妥善地得出:   (1)所要求的推广必须也满足广义相对性公设。   (2)如果在所考虑的区域中有任何物质存在,对其激发一个场的效应而言,只有它的惯性质量是重要的,按照第15节,也就是只有它的能量是重要的。   (3)引力场加上物质必须满足能量(和冲量)守恒定律。   最后,广义相对性原理使我们能够确定引力场对于不存在引力场时按照已知定律已在发生的所有过程的整个进程的影响,这样的过程也就是已经纳入狭义相对论的范围的过程,对此,我们原则上按照已对量杆。钟和自由运动的质点解释过的方法去进行。   照这样从广义相对性公设导出的引力论,其优越之处不仅在于它的完美性;不仅在于消除第21节所显示的经典力学所带的缺陷;不仅在于解释惯性质量和引力质量相等的经验定律;而且也在于它已经解释了经典力学对之无能为力的一个天文观测结果。   如果我们把这个引力论的应用限制于下述的情况,即引力场可以认为是相当弱的,而且在引力场内相对于坐标系运动着的所有质量的速度与光速比较都是相当小的,那么,作为第一级近似我们就得到牛顿的引力理论。这样上牛顿的引力理论在这里无需任何特别的假定就可以得到,而牛顿当时却必须引进这样的假设,即相互吸引的质点问的吸引力必须与质点问的距离的平方成反比、如果我们提高计算的精确度,那么它与牛顿理论下一致的偏差就会表现出来,但是由于这些偏差相当小;实际上都必然是观测所检验不出来的。   这里我们必须指出过些偏差中的一个提请读者注意。按照牛领的理论,行星沿椭圆轨道绕日运行,如果我们能够略而不计恒星本身的运动以及所考虑的其他行星的作用,这个椭圆轨道相对于恒星的位置将永久保持不变。因此,如果我们改正所观测的行星运动而把这两种影响消去,而且如果牛顿的理论真能严格正确,那么我们所得到的行星轨道就应该是一个相对于恒星系是固定不移的椭圆轨道。这个可以用相当高的精确以验证的推断,除了一个行星之外;对于所有其他的行全而言,己经得到了证实,其精确度是目前可能获致的观测灵敏度所能达到的精确度。唯一例外的就是水星,它是离太阳最近的行星。从轨韦里耶(Leverrier)的时候起人们就知道,作为水星轨道的椭圆,经过改正消去上述影响后,相对于恒星系并不是固定不移的,而是非常缓慢地在轨道的平面内转动,并且顺着沿轨道的运动时方向转动。所得到的这个轨道椭圆的这种转动的值是每世纪43"(角度),其误差保证下会超过几秒(角度).经典力李解释这个效应只能借助于设立假设,而这些假设是下大可能成立的,这些假设的设立仅仅是为了解释这个效应而已。   根据广义相对论,我们发现,每一个绕日运行的行星的椭圆轨道,都必然以上述方式转动;对于除水星以外的所有其他行星而言,这种转动都大小,从现时可能达到的观测灵敏度是无法探测的;但是对于水星而言,这个数值必须达到每世纪43"这个结果与观测严格相符。   除此以外,到目前为止只可能从广义相对论得出两个可以由观测检验的推论,即光线因太阳引力场而发生弯曲,以及来自世大星球的光的谱线与在地球上以类似方式产生的(即由同一种原子产生的)相应光谱线比较,有位移现象发生。从广义相对论得出的这两个推论都已经得到证实。 第三部分 关于整个宇宙的一些考虑   30.牛顿理论在宇宙论方面的困难   经典天体力学除了存在着第21节所讨论的困难之外,还存在着另一个基本困难,根据我的了解,天文学家希来哲(Seeliger)第一个对这个基本困难进行了详细的讨论。如果我们仔细地考虑一下这个问题:对于宇宙,作为整体而言,我们应持何种看法;那么我们所想到的第一个月答一定是:航空间(和时间)而言,宇宙是无限的。到处都存在着星体,因此,虽然就细微部分说来物质的密度变化很无但平均说来是到处一样的,换言之,我们在宇宙空间中无论走得多么远,都会到处遇到稀薄的恒星群,这些恒星群的种类和密度差不多都是一样的。   这个看法与牛顿的理论是下一致的。牛顿理论要求宇宙应具有某种中心,处在这个中心的星群密度最大,从这个中心向外走,诸星的群密度逐渐减小,直到最后,在非常遥远处,成为一个无限的空虚区域。恒星宇宙应该是无限的空间海洋中的一个有限的岛屿。   这个概念本身已不很令人满意。这种概念更加不能令人满意的是由于它导致了下述结果:从恒星发出的光以及恒星系中的各个个别恒星不断奔向无限的空间,一去不返,而且永远不再与其他自然客体相互发生作用;这样的一个有限的物质宇宙将注定逐渐而系统地被削弱。   为了避免这种两难局面,希来哲对牛顿定律提出了一项修正,其中假定,对于很大的距离而言,两质量之间的吸引力比按照平方反比定律得出的结果减小得更加快些。这样,物质的平均密度就有可能处处一样,甚至到无限远处也是一样。而不会产生无限大的引力场。这样我们就摆脱了物质宇宙应该具有某种象中心之类的东西的这种讨厌的概念。当然,我们摆脱上述基本困难是付出了代价的,“这就是对牛顿定律进行了修改井使之复杂化,而这种修改和复杂化既无经验根据亦无理论根据)我们能够设想出无数个可以实现同样目的的“定律,而不能举出理由说明为什么其中一个定律比其他定律更为可取;因为这些定律中的任何一个,与牛顿定律相比,并没有建立在更为普遍的理论原则上。   31.一个“有限”而又“无界”的宇宙的可能性   但是,对宇宙的构造的探索同时也沿着另一个颇不相同的方向前进。非欧几里得几何学的发展导致了对于这样一个事实的认识,即我们能对我们的宇宙空间的无限性表示怀疑,而不会与思维的规律或与经验发生冲突(黎曼、亥姆霍兹)。亥姆霍兹和潘加里(Poincare)已经以无比的明晰性详细地论述了这些问题,我在这里只能简单地提一下。   首先我们设想在二维空间中的一种存在。持有扁平工具(特别是扁平的刚性量杆)的扁平生物自由地在一个平面上走动,对于它们来说,在这个平面之外没有任何东西存在;它们所观察到的它们自己的和它们的扁平的“东西”的一切经历,就是它们的平面所包含着的全部实在,具体言之,例如欧几里得平面几何学中的一切作图都可以借助于杆子来实现,亦即利用在第24节所已讨论过的格子构图法。与我们的宇宙对比,这些生物的宇宙是二维的;但同我们的宇宙一样,它们的宇宙也延伸到无限远处。在它们的宇宙中有足够的地方可以容纳无限多个用杆于构成的互相等同的正方形;亦即它们的字宙的容积(面积)是无限的。如果这些生物说它们的宇宙是“平面”的,那么这句话是有意义的,因为它们的意思是它们能用它们的杆子按照欧几里得平面几何学作图。这里,各个个别杆子永远代表同一距离,而与其本身所处的位置无关。   现在让我们考虑一下另一种二维的存在,不过这次是在一个球面上而不是在一个平面上。这种扁平生物连同它们的量杆以及其他的物体,与这个球面完全贴合,而且它们不可能离开这个球面。因而它们所能观察的整个宇宙仅仅扩展到整个球面。这些生物能否认为它们宇宙的几何学是平面几何学,它们的杆子同样又是其“距离”的实在体现呢?它们不能这样做。因为如果它们想实现一根直线,它们将地得到一根曲线,我们“三维生物”把这根曲线称作一个大圆,亦即具有确定的有限长度的、本身就是完整独立的线,其长度可以用量杆测定。同样,这个宇宙的面积是有限的,可以与用杆子构成的正方形的面积相比较。从这种考虑得出的极大妙处在于承认了这样一个事实,即这些生物的琮宙是有限的,但又是无界的。   但是这些球面生物无需作世界旅行就可以认识到它们所居住的不是一个欧几里得宇宙。在它们的“世界”的各个部分它们都能够弄清楚这一点,只要它们所使用的部分不太小就可以了。从一点出发,它们向所有各个方向画等长的“直线”(由三维空间判断是圆的弧段)。它们会把连接这些线的自由端的线称作一个“圆”。按照欧几里得平面几何学,平面上的圆的圆周与直径之比(圆周与直径的长度用同一根杆子测定)等于常数π这个常数与圆的直径大小无关。我们的扁平生物在它们的球面上将会发现圆周与直径之比有以下的值。   亦即一个比π小的值,圆半径与“世界球”半径R之比俞大,上述比值与π之差就愈加可观。借助于这个关系,球面生物就能确定它们的宇宙(“世界”)的半径,即使它们能够用来进行测量的仅仅是它们的世界球的比较小的二部分。但是如果这个部分的确非常小,它们就下再能够证明它们是居住在一个球面“世界”上,而不是居住在一个欧几里得平面上,因为球面上的微小部分与同样大小的一块平面仅有极微细的差别,因此,如果这些球面生物居住在一个行星上,这个行星的太阳系仅占球面宇宙内的小到微不足道的一部分,那么这些球面生物就无法确定它们居住的宇宙是有限的还是无限的,因为它们所能接近的“一小块宇宙”在这两种情况下实际上都是平面的;或者说是欧几里得的。从这个讨论可以直接推知,对于我们的球面生物而言,。=个圆的圆周起先随着半径的增大而增大,直到达到“宇宙圆周”为止,其后圆周随着半径的值的进一步增大而逐渐减小以至于零,在这个过程中,圆的面积继续不断地增大,直到最后等于整个“世界球”的总面积为止。   或许读者会感到奇怪,为什么我们把我们的“生物”放在一个球面上而不放在另外一种闭合曲面上。但是由于以下事实,这种选择是有理由的,在所有的闭合曲面中,唯有球面具有这种性质;即该曲面上所有的点都是等效的,我承认,一个圆的圆周(与其半径矿的比取决于人但是,对于一个给定的T的值而言;这个比对于“世界球”上所有的点都是一样的;换言之,这个“世界球”是一个“等曲率曲面”。   对于这个二维球面宇宙,我们有一个三维比拟,这就是黎曼发现的三维球面空间。它的点同样也都是等效的。这个球面空间具有一个有限的体积,由其“半径”确定之(2π2R3),能否设想一个球面空间呢?设想一个空间只不过是意味着我们设想我们的“空间”经验的一个模型,这种“空间”经验是我们在移动“刚”体时能够体会到的。在这个意义上我们能够设想一个球面空音。   设我们从一点向所有各个方向画线或拉绳索,并用一根量杆在每根线或绳索上量取距离r。这些具有长度r的线或绳索的所有的自由端点都位于一个球面上。我们能够借助于一个用量杆构成的正方形用特别方法把这个曲面的面积(F)测量出来,如果这个宇宙是欧几里得宇宙,则;如果这个宇宙是球面宇宙,那么F就总是小于4πr2。随着r的值的增大,F从零增大到一个最大值,这个最大值是由“世界半径”来确定的,但随着r的值的进一步增大,这个面积就会逐渐缩小以至于零。起初,从始点辐射出去的直线彼此散开而且相距越来越远,但后来又相互趋近,最后它们终于在与始点相对立的“对立点”上再次相会。在这种情况下它们穿越了整个球面空间。不难看出,这个三维球面空间与二维球面十分相似。这个球面空间是有限的(亦即体积是有限的),同时又是无界的。   可以提一下,还有另一种弯曲空间:“椭圆空间”。可以把“椭圆空间”看作这样的弯曲空间,即在这个空间中两个“对立点”是等样的(不可辨别的).因此,在某种程度上可以把椭圆宇宙当作一个具有中心对称的弯曲宇宙。   由以上所述可以推知,无界的闭合空间是可以想象的。在这类空间中,球面空间(以及椭圆空间)在其简单性方面胜过其他空间,因为其上所有的点都是等效的。由于这个讨论的结果,对天文学家和物理学家提出了一个非常有趣的问题:我们居住的宇宙是无限的,抑或象球口宇宙那样是有限的呢?我们的经验远远不足以使我们能够回答这个问题,但是广义相对论使我们能够以一定程度的确实性回答应个问题;这样,第30节所提到的困难就得到了解决。   32.以广义相对论为依据的空间结构   根据广义相对沦,空间的几何性质并不是独立的;确是由物质决定的,因此,我们只有已知物质的状态并以此为依据进行考虑才能对宇宙的几何结构作出论断。根据经验我们知道,对于一个适当选定的坐标系而言,诸星的速度比起光的传播速度来是相当小的。因此,如果我们将物质看作是静止的,我们就能够在粗略的近似程度上得出一个关于整个宇宙的性质的结论。   从我们前面的讨论已经知道,量杆和钟的行为受引力场的影响,亦即受物质分布的影响。这一点本身就足以排除欧几里得几何学在我们的宇宙中严格有效的这种可能性,但是可以想象,我们的字宵与一个欧几里得宇宙仅有微小的差别,而且由于计算表明,甚至象我们的太阳那样大的质量对于周围的空间的度规的影响也是极其微小的,因而上述看法就显得越发可靠。我们可以设想,就几何学而论,我们的宇宙的性质与这样的一个曲面相似,这个曲面在它的各个个别部分上是下规则地弯曲的,但整个曲面没有什么地方与一个平面有显著的差别,就象是一个有细微波坟的湖面,这样的字宙可以恰当地称为椎欧几里得宇宙。就其空间衍育,这个宇宙是无限的。但是计算表明,在一个准欧凡里得宇宙中物质的平均密度必然要等于零。因此这样的宇宙不可能处处有物质存在;呈现在我们面前的将是我们在第30节中所描绘的那种不能令人满意的景象。   如果在这个宇宙中我们有一个不等于零的物质平均密度,那么,不论这个密度与零相差多么小,这个宇宙就不可能是是准欧几里得的。相反,计算的结果表明,如果物质是均匀分布的,宇宙就必然是球形的(或椭圆的)。由于实际上物质的细微分布不是均匀的,因面实在的宇宙在其各个个别部分上会与球形有出入,亦即宇宙将是准球形的。但是这个宇宙必然是有限的。实际上这个理论向我们提供了宇宙的空间文度与宇宙的物质平均密度之间的简单关系。 附  录   一、洛伦兹变换的简单推导   [补充第11节]   按照图2所示两坐标系的相对取向,该两坐标系的x轴永远是重合的。在这个情况下我们可以把问题分为几部分,首先只考虑x轴发生的事件。任何一个这样的事件,对于坐标系K是由横坐标x和时间t来表示,对于坐标系K'则由横坐x'和时间t'来表示。当给定x和t时,我们要求出x'和t'。   沿着正x轴前进的一个光信号按照方程   或 x=ct   x-ct=0       (1) 传播。由于同一光信号必须以速度c相对于K'传播,因此相对于坐标系K'的传播将由类似的公式   x'-ct'=0      (2) 表示。满足(1)的那些空时点(事件)必须也满足(2),显然这一点是成立的,只要关系   (x'-ct')=λ(x-ct)   (3)   一般满足,其中λ表示一个常数;因为,按照(3),(x-ct)等于零时(x'-ct')就必然也等于零。   如果我们对向着负x轴传播的光线应用完全相同的考虑,我们就得到条件   (x'-ct')=μ(x-ct)     (4)   方程(3)和(4)相加(或相减),并为方便起见引入常数a和b代换常数λ和μ,令   a=(μ+λ)/2   以及  b=(μ-λ)/2   我们得到方程   x'=ax-bct   ct'=act-bx       (5)   因此若常数a和b为已知,我们就得到我们的问题的解。a和b可由下述讨论确定。   以于K'的原点我们永远有x'=0,因此按照(5)的第一个方程   x=bc/a×t   如果我们将K'的原点相对于K的运动的速度称为v,我们就有   v=bc/a       (6)   同一量值v可以从议程(5)得出,只要我们计算K'的另一点相对于K的速度,或者计算K的一点相对于K'的速度(指向负x轴)。总之,我们可以指定v为两坐标系的相对速度。   还有,相对性原理告诉我们,由K判断的相对于K'保持静止的单位量杆的长度,必须恰好等于由K'判断的相对于K保持静止的单位量杆的长度。为了看一看由K观察x'轴上的诸点是什么样子,我们只需要从K对K'拍个“快照”;这意味着我们必须引入t(K的时间)的一个特别的值,例如t=0,对于这个t的值,我们从(5)的第一个方程就得到   x'=ax   因此,如果在K'坐标系中测量,x'轴上两点相隔的距离为1=x,该两点在我们的瞬时快照中相隔的距离就是   △x=1/a      (7)   但是如果从K'(t'=0)拍取快照,而且如果我们从方程(5)消去t考虑到表示式(6),我们得到   由此我们推断,在x轴上相隔距离1(相对于K)的两点,在我们的快照上将由距离       (7a) 表示。   但是根据以上所述,这两个快照必须是全等的;因此(7)中的必须等于(7a)中的,这样我们就得到        (7b)   方程(6)和(7b)决定常数a和b。在(5)中代入这两个常数的值,我们得到第11节所提出的第一个和第四个议程:       (8)   这样我们就得到了对于在x轴上的洛伦兹变换。它满足条件    (8a)   再把这个结果加以推广,以便将发生在x轴外面的事件也包括进去。此项推广只要保留方程(8)并补充以关系式         (9) 就能得到。   这样,无论对于坐标系K或是对于坐标系K',我们都满足了任意方向的光线在真空中速度不变的公设。这一点可以证明如下。   设在时间t=0时从K的原点发出一个光信号。这个光信号将按照议程 传播,或者,如果方程两边取平方,按照方程     (10) 传播。   光的传播定律结合着相对性公设要求所考虑的信号(从K'去判断)应用按照对应的公式   或 r'=ct'      (10a)   传播为了使方程(10a)可以从方程(10)推出,我们必须有      (11)   由于方程(8a)对于x轴上的点必须成立,因此我们有1=σ,不难看出,对于1=σ,洛伦兹变换确实满足(11);因为(11)可以由(8a)和(9)推出,因而也可以由(8)和(9)推出。这样我们就导出了洛伦兹变换。   由(8)和(9)表示的洛伦兹变换仍需加以推广。显然,在选择K'的轴时是否要使之与K的轴在空间中相互平行是无关重要的。同时,K'相对于K的平动速度是否沿x轴的方向也是无关紧要的。通过简单的考虑可以证明,我们能够通过两种变换建立这种广义的洛伦兹变换,这两种变换就是狭义的洛伦兹变换和纯粹的空间变换,纯粹的空间变换相当于用一个坐标轴指向其他方向的新的直角坐标系代换原有的直角坐标系。   我们可以用数学方法,对推广了的洛伦兹变换的特性作如下的描述:   推广了的洛伦兹变换就是用x,y,z,t的线性齐次函数来表示x',y',z',t',而这种线性齐次函数的性质又必须能使关系式      (11a)   恒等地被满足。也就是说:如果我们用这些x,y,z,t的线性齐次函数来代换在(11a)左连所列的x',y',z',t',则(11a)的左边与其右边完全一致。   二、闵可夫斯基四维空间(“世界”)   [补充第17节]   如果我们引用虚量1.ct.代替t作为时间变量,我们就能够更加简单地表述洛伦兹变换的特性。据此,如果我们引入   对带撇号的坐标系K'也采取同样的方式,那么为洛伦兹变换公式所恒等地满足的必要条件可以表示为:      (12)   亦即通过上述“坐标”的选用,(11a)就变换为这个方程。   我们从(12)看到,虚值时间坐标x4与空间坐标x1,x2,x3,是以完全相同的方式进入这个变换条件中的。正是由于这个事实,所以按照相对论来说,“时间” x4应与空间坐标x1,x2,x3,以同等形式进入自然定律中去。   用“坐标” x1,x2,x3,x4描述的四给连续区,闵可夫斯基称之为“世界”,他并且把代表某一事件的点称作“世界点”。这样,三维空间中发生的“事件”按照物理学的说法就成为四维“世界”的一个“存在”。   这个四维“世界”与(欧几里得)解析几何学的三维“空间”很近似。如果我们在这个“空间”引入一个具有同一原点的新的笛卡儿坐标系(x'1,x'2,x'3)那么x'1,x'2,x'3就是x1,x2,x3的线性齐次函数,并且恒等地满足方程   这个议程与(12)完全类似。我们可以在形式上把闵可夫斯基“世界”看作(具有虚恰时间坐标的)四维欧几里得空间;洛伦兹变换相当于坐标系在四维“世界”中的“转动”。   三、广义相对论的实验证实   从系统的理论观点来看,我们可以设想经验科学的进化过程是一个连续的归纳过程,理论发展起来并以经验定律的形式简洁地综合概括了大量的个别观察的结果,再从这些经验定律,通过比较推敲,确定普遍定律。根据这种看法,科学的发展有些象编纂分类目录。这好象是一种纯粹经验性的工作。   但是这种观点绝不能概括整个实际过程;因为这种观点忽视了在严正科学(严格正确的科学,特别指数学一类的科学,——译者注)的发展过程中直观和演绎思考所起的重要作用。一门科学一经走出它的初始阶段,理论的发展就不再仅仅依靠一个排列的过程来实现而是研究人员受到经验数据的启发而建立起一个思想体系;一般来说,这个思想体系在逻辑上是用少数的基本假定,即所谓公理,建立起来的。我们将这样的思想体系称力理论。理论有存在的必要的理由乃在于它能把大量的个别观察联系起来,而理论的“真实性”也正在于此。   与同一个经验数据的复合相对应的可能会有好几个彼此颇不相同的理论。但就从这些理论得出的、能够加以检验的推论而言,这几种理沦可能是十分一致的,以致难以发现两种理论有任何不一致的推论。例如,在生物学领域中有一个普遍感到兴趣的例子,即一方面有达尔文关于构种通过生存竞争的选择而发展的理论,另一方面有以后天取得的特性可以遗传的假设为基础的物种发展理论。   我们还有另一个例子说明两种理论的推论是颇为一致的,这两种理论就是牛顿力学和广义相对论。这两种理论是这样的一致,以致从广义相对十导出的能够加以检验的推论而力相对论创立前的物理学所未能导出的,到目前为止我们只能找到少数几个,尽管这两种理论的基本假定有着深刻的差别。下面我们将再一次讨论这几个重要的推沦。还要讨论迄今已经得到的关于这些推论的经验证据。   (1)水星近日点的运动   按照牛顿力学和牛顿的引力定律,绕太阳运行的行星围绕大阳(或者说得更正确些,围绕太阳和这个行星的共同重心)描画一个椭圆。在这样的体系中,太阳或者共同重心位于轨道椭圆的一个焦点上,因而在二个行星年的过程中,太阳和行星之间的距离由极小增为极大;随后,减至极小。如果我们在计算中不应用牛顿定律,而引进二个稍有不同的引力定律,我们就会发现,按照这个新的定律,在行星运动的过程中。太阳和行星之间的距离仍表现出周期性的变化;但在这个情况下,太阳和行星的连线(向径)在这样的一个周期中(从近日点一离太阳最近的点一到近日点)所扫过的角将不是360度”。因而轨道曲线将不是一个闭合曲线,随着时间的推移轨道曲线将充满轨道平面的一个环形部分,亦即分别以太阳和行星之间的最大距离和最小距离为半径的两个圆之间的环形部分。   按照广义相对论(广义相对论当然与牛顿的理论不同),行星在其轨道上的运动应与牛顿一开普勒定律有微小的出入,即从一个近日点走到下一个近日点期间,太阳一行星向径所扫过的角度比对应于公转整一周的角度要大,这个差的值由 决定。   (注意:公转整一周对应子物理学中惯用的角的绝对量度中的2π角;从一个近日点到下一个近日点期间,太阳一行星向径所扫过的角大于2π角,上式表出的量值就是这个差。)在此式中,a表示椭圆的半长轴,e是椭圆的偏心率,c是光速,T是行星公转周期。我们的结果也可以表达如下:按照广义相对论,椭圆的长轴绕太阳旋转,旋转的方向与行星的轨直运动方向相同。按照理论的要求,这个转动对于水星而言应达到每世纪43”(角度),但是对于我们的太阳系的其他行星而言,这个转动的量值应该是很小的,是必然观测不到的。(特别是由于下一颗行星——金星——的轨道几乎正好是一个圆,这样就更加难于精确地确定近日点的位置)   事实上天文学家已经发现,按照牛顿的理论计算所观测的水星运动时所达到的精确度是不能满足现时能够达到的观测灵敏度的。在计入其余行星对水星的全部摄动影响以后,发现(勒韦里耶于1859年,牛柯姆[Newcomb]于1895年)仍然遗留下一个无法解释的水星轨道近日点的移动问题,此种移动的量值与上述的每世纪+43"(角度)并无显著的差别。此项经验结果的测不准范围只达到几秒。   (2)光线在引力场中的偏转   在第22节已经提到,按照广义相对论,一道光线穿过引力场时其路程发生弯曲,此种变曲情况与抛射一物体通过引力场时其路发生弯曲相似。根据这个理论,我们应该预期一道光线经过一个天体的近傍时将发生趋向该天体的偏转。对于经过距离太阳中心△个太阳半径处的一道光线而言,偏转角(a)应等于   可以补充一句,按照理论,这个偏转的一半是由于太阳的牛顿引力场造成的;另一半是太阳导导致的空间几何形变(“变曲”)造成的。   这个结果可以在日全食时对恒星照象从实验上进行检验。我们之所以必须等待日全食的唯一原因是由于在所有其他的时间里大气受阳光强烈照射以致看不见位于太阳圆面附近的恒星。所预言的疚可以清楚地从图5中看到。如果没有太阳(S),一颗实际上可以视为位于无限远的恒星,由地球上观测,将在方向D1看到。但是由于来自恒星的光经过太阳时发生偏转,这颗恒星D2看到,亦即这颗恒星的视位置比它的真位置离太阳的中心更远一些。   在实践中检验这个问题是按照下述方法进行的。在日食时对太阳附近的恒星拍照。此外,当太阳位于天空的其他位置时,亦即在早几个月或晚几个月时,对这些恒星拍摄另一张照片。与标准照片比较,日食照片上恒星的位置应沿径向外移(离开太阳的中心),外移的量值对应于角a。   英国皇家学会和皇家天文学会对这个重要的推论进行了审查,我们深为感激。这两个学会没有被战争和战争所引起的物质上和精神上的种种困难所挫折,他们装备了两个远征观测队——一个到巴西的索布拉尔(Sobral),一个到西非的比林西卑岛(principe)——并派出了英国的几位最著名的天文学家[艾丁顿、柯庭汉(cottingham)、克罗姆林(crommelin)、戴维逊(Davidson)],拍摄了1919年5月29日的日食照片。预料到在日食期间拍摄的恒星照片与其他用作比较的照片之间的相对差异只有一毫米的百分之几。因此,为拍报照片所需的照片之间的相对差异只有一毫米的百分之几。因此,为拍摄照片所需的调准工作以及随后对这些照片的量度都需要有很高的准确度。   测量的结果十分圆满地证实了这个理论。观测所得和计算所得的恒星位置偏差(以秒计算)的直角分量有如下表所列:   (3)光谱线的红向移动   在第23节中曾经表明,在一个相对于伽利略系K而转动的K'系中,构造完全一样而且被认定为相对于转动的参考物体保持静止的钟,其走动的时率与其所在的位置有关。现在我们将要定量地研究这个相倚关系。放置于距圆盘中心r处的一个钟有一个相对于K的速度,这个速度由   v=ωr   决定,其中ω表示圆盘K' 相对于K的转动角速度。设v0表示这个钟相对于K保持静止时,在单位时间内相对于K的滴嗒次数(这个钟的“时率”),那么当这个钟相对于K以速度v运动、但相对于圆盘保持静止时,这个钟的“时率”,按照第12节,将由   决定,或者以足够的准确度由   决定。此式也可以写成下述形式:   如果我们以φ表示钟所在的位置和圆盘中心之间的离心力势差,亦即将单位质量从转动的圆盘上钟所在的位置移动到圆盘中心为克服离心力所需要作的功(取负值),那么我们就有   由此得出   首先我们从此式看到,两个构造完全一样的钟,如果它们的位置与圆盘中心的距离不一样,那么它们走动的时率也不一样。由一个随着圆盘转动的观察者来看,这个结果也是有效的。   现在从圆盘上去判断,圆盘系处在一个引力场中,而引力场的势为φ,因此,我们所得到的结果对于引力场是十分普遍地成立的。还有,我们可以将发出光谱线的一个原子当作一个钟,这样下述陈述即得以成立:   一个原子吸收的或发出的光的频率与该原子所处在的引力场的势有关。   位于一个天体表面上的原子的频率与处于自由空间中的(或位于一个比较小的天体的表面上的)同一元素的原子的频率相比要低一些。这里,其中K是牛顿引力常数,M是天体的质量,因此,在恒星表面上产生的光谱线与同一元素在地球表面上所产生的光谱线比较,应发生红向移动,移云贵的量值是   对于太阳而言,理沦预计的红向移动约等于波长的百万分之二。对于恒星而言,不可能得出可靠的计算结果,因为质量M和半径r一般都是未知的。   此种效应是否存在还是一个未决问题,目前(1920年)天文学家正在以很大的热情从事工作以求这个问题的解决。由于对于太阳而言此种效应很小,因而此种效应是否存在难以作出判断。格雷勃(Gtebe〕和巴合姆(Bachem)根据他们自己以及艾沃舍德(Evrershed)和史瓦兹希耳德(Schwarzschild)对氰光谱带的测量,认为此种效应的存在差下多已经没有疑问;而其他的研究人员,特别是圣约翰(St.John),根据他们的测量结果,得出了相反的意见。   对恒星进行的统计研究指出)光谱线朝向折射较小的一端的乎均位移肯定是存在的;但是,这些位移实际上是否由引力效应导致的,直到目前为止,根据对现有的数据的研究,还不能得出任何确定的结论。在艾·傅峦德里希(E.Freundlich)写的题为《广义相对论的验证》的一篇论文中[见柏林Julius Springer出版的《自然科学》(ie Naturwissenschaften)1919年第35期第520页],已将观测的结果收集在一起,并从我们这里所注意的问题的角度对这些结果进行了详尽的讨论。   无论如何在未来的几年中将会得出一个确定的结论。如果引力势导致的光谱线红向移动并不存在,那么广义相对论就不能成立。另一方面,如果光谱线的位移确实是引力势引起的:那么对于此种位移的研究将会为我们提供关于天体的质量的重要情报。   【英文版附注】光谱线的红向位移已为亚当斯(Adams)于1924年通过时天狼星的密度很大的伴星的观测确定地予以证实,无狼垦伪伴里所产生的这种效应要比太阳产生的这种效应大三十倍左右。                             罗伯特·伍·罗森   四、以广义相对论为依据的空间结构   [补充第32节]   自从这本小册子的第一版出版以来,我们对于宇宙太空的结构的认识(“宇宙论问题”)已服重要的发展,即使是关于这个问题的一本通俗著作,也是应该提到这个重要的发展的。   关于这个问题我原来的论述系基于两个假设:   (1)整个宇宙空间中的物质有一个平均密度,这个平均密度处处相同而且不等于零。   (2)宇宙空间的大小(“半径”)与时间无关。   按照文义相对论,这两个假设已证明是一致的,但只是在场方程中加上一个假设项之后才能如此,而这样的一项不是理也并不是很自然的(“场方程的宇宙项”)。   假设(2)当时在我看来是不可避免的,因为我当时认为,如果我们离开这个假设,就要陷入无休止的空想。   但是,早在二十年代,苏联数学家夫里德曼(Friedman)就已经证明,从纯粹的理论观点看来,作另一种不同的假设是自然的。他看到,如果决心舍弃假设(2)那么在引力场方程中不引入这个不大自然的宇宙项对于保留假设(1)仍是可能的。亦即原来的场方程可以有这样的一个解,其中"世界半径"依赖于时间(膨胀的宇宙空间)。在这个意义上我们可以说,按照夫里德曼的观点,这个理论要求宇宙空间具有膨胀性。   几年以后哈勃(Hubble)对河外星云(“银河”)的专门研究证明,星云发出的光谱线有红向位移,此红向位移随着星去的距离有规则地增大。就我们现有的知识而言,这种现象可以依照多普勒原理解释为太空中整个恒星系的膨胀运动——按照夫里德曼,这是引力场议程所要求的,因此,在某种程度上可以认为哈勃的发现是这个理论的一个证实。   但是这里确实引起了一个不可思议的困难局面。如果将哈勃发现的银河光谱线位移解释为一种膨胀(从理论的观点看来这是没有多少疑问的),那么,依此推断,此种膨胀“仅仅”起源于大约十亿年以前;而按照天文物理学,各个个别恒星和恒星系的发生和发展很可能需要长得多的时间。如何克服这种矛盾,仍毫无所知。   我还需要提一下,我们还不能从宇宙空间膨胀理论以及天文学的经验数据得出关于(三维)宇宙空间的有限性或无限性的结论;而原来的宇宙空间“静态”假设则导致了宇宙空间的闭合性(有限性)。   五、相对论与空间问题   牛顿物理学的特点是承认空间和时间乃是和物质一样地有其独立而实际的存在,这是因为在牛顿的运动定律中出现了加速度的观念。但是,按照这一理论,加速度只可能指“相圣于空间的加速度”。因此,为了使牛顿运动定律中出现的加速度能够被看作是一个具有意义的量,就必须把牛顿的空间看作是“静止的”,或者最少是“非加速的”。对于时间而言,情况完全相同,时间当然也同样与加速度的要领有关。牛顿本人以及与他同时代的有识之士都感到,把空间本身和空间的运动状态同样地说成为具有物理实在性是不很妥当的;但是,为了使力学具有明确的意义,当时没有别的办法。   要众把一般的空间,尤其是一无所有的空间,视为具有物理实在性,的确是一种苛刻的要求,自远古以来哲学家们就已一再拒绝作这样的假设。笛卡儿曾大体上按照下述方式进行论证:空间与广延性是同一的,但广延性是与物体相联系的;因此,没有物体的空间是不存在的。亦即一无所有的空间是不存在的。这个论点的弱点主要有如下述。文延性概念起源于我们能把固体铺展开来或拼靠在一起的经验,这一点当然是对的。但不能由此得出结论说,如果某此事例本身不是构成广延性概念的源由,这个概念就不可能适用于这些事例。照这样来推广概念是否合理,可以间接地由其对于理解经验结果时所具有的价值来证明。因此,关于广延性的要领仅能适用于物体的断言,就其本身而论肯定是没有根据的。但是以后我们将会看到,广义相对论绕了一个大弯仍旧证实了笛卡儿的概念。使笛卡儿得出他的十分吸引人的见解的,肯定是这样的感觉,即只要不是万不得已的情况,我们不应该把象空间这一类无法“直接体验”的东西视为具有实在性。   以我们通常的思想习惯为基础来考虑,空间观念或这一观念的必要性的心理起源,远非表面看来那样明显。古代的几何学家所研究的是概念上的东西(直线、点、面),并没有真正研究到空间本身,象后来在解析几何学上所做到的那样。但是,空间观念仍可以从某些原始经验得到一些启示。例如:假定有一个已经造好了的箱子。我们可以按照某种方法把物体排列在箱子里面,把它装满。这种排列物体的可能性是“箱子”这个物质客体的属性,是随着箱子而产生的,也就是随着被箱子“被包围着的空间”而产生的。这个“被包围着的空间”因不同的箱子而异,人们很自然地认为这个“被乌黑着的空间”因不同的箱子而异,人们很自然地认为这个“被包围着的空间”在任何时刻都不依赖于箱子里面真有物体存在与否。当箱子里面没有物体时,箱子的空间看起来似乎是“一无所有的”。   到目前为止,我们的空间概念是同箱子联系在一起的。但是,我们知道,使箱子空间具有容纳物体的可能性并不取决于箱壁的厚薄如何。能不能把箱壁的厚度缩减为零而又使这个“空间”不致因此而消失呢?显然这种求极限的方法是很自然的。这样,在我们的思想中就只剩下了没有箱子的空间,一个本身自然存在原空间;虽然,如果我们把这个要领的起源忘掉的话,这个空间似乎还是很不实在。人们能够了解,把空间看作与物质客体无关且可以脱离物质而存在的东西,是和笛卡儿的论点相反的。(但是这并没有防碍他在解析几何学中把空间作为一个基本概念来处理。)当人们指出水银气压计中有真空存在时,肯定就完全驳倒了所有持有笛卡儿见解的人决。但是不可否认,甚至在这初始阶段,空间的概念或者空间被看作是独立而实在的东西,已带有某些不能令人满意之处了。   用什么方法能够把物体装空间(例如箱子),是三维欧几里得几何学的课题。欧几里得几何学的公理体系很容易使人迷惑,使人忘记它所讨论的仍是可以成为现实的东西。   如果空间概念是按照上述方式形成的,如果从“填满”箱子的经验推论下去,那么这个空间根本上是一个有界的空间。但是,这这种限制看来并不是必要的,因为显然我们总可以用一个比较大的箱子把那个比较小的箱子装进去。这样看来,空间又好象是无界的。   在这里我不准备讨论关于三维性质的和欧几里得性质的空间概念如何能溯源于比较原始的经验。我想首先从其他角度来讨论一下空间概念在物理学思想发展过程中所起的作用。   当一个小箱子s在一个大箱子S的全空空间中处于相对静止的状态时,s的全空空间就是S的全空空间的一部份,而且把s和S的全空空间一起包括进去的同一个“空间”,既属于箱子s。但是,当s相对于S运动时,这个概念就不那么简单了。人们就要认为s总是乌黑判同一空间,但其所乌黑的S的一部分空间则是可变的。这样就有必要认定每一个箱子各有其特别的、无界的空间,并且有必要假定这两个空间彼此作相对运动。   在人们注意到这种复杂情况以前,空间看来好象是物体在其中游来游去的一种无界的媒质或容器。但是现在必须记得,空间有无限多个,这些空间彼此作相对运动。认为空间是客观存在的、是不依赖于物质的这种概念系属于现代科学兴起以前的思想。但是关于存在着无限多个,这些空间彼此作相对运动。认为空间是客观存在的、是不依于物质的这种概念系属于现代科学兴起以前的思想。但是关于存在着无限多个作相对运动的空间的观念则是现代科学兴起以后的思想。后一观念在逻辑上的确是无可避免的,但是这种观念甚至在现代科学思想中也远未起过重要的作用。   关于时间概念的心理起源又是怎样的呢?这个概念无疑是与“回想”相联系的,而且也与感觉经验和对这些经验的回忆这两者之间的辨别相联系。感觉经验与回忆(或简单重现)之间的辨别是否在心理上由我们直接感到的呢?这一点就其本身而言是有疑问的。每一个人都有过这样的经验,就是曾经怀疑某件事是通过自己的感官真正经验过的呢,还是只不过是一个梦。在这两种可能性之间进行辨别的能力大概最初是脑子要整理出次序来的一种活动的结果。   如果一个经验是与一个“回忆”联系在一起的,那么就认为这个经验与“此刻的经验”相比是“较早的”。这是一种用于回忆经验的排列概念次序的原则,而贯彻这个原则的可能性就产生了主观的时间概念,亦即关于个人经验的排列的时间概念。   使时间要领具有客观意义是什么意思呢?我们举一个例子。某甲(“我”)有这样的经验:“天空正在闪电”。与此同时,某甲还经验到某乙的这样的一种行为,某甲可以把这种行为与他本身关于“天空正在闪电”的经验联系起来。这样某甲就把“天空正在闪电”的经验与某乙联系起来。对于某甲来说,他认为其他的人也参与了“天空正在闪电”的经验。“天空正在闪电”廉洁不再被解释为一种个人独有的经验,而是解释为其他人的经验(或者最终解释为仅仅是一种“潜在的经验”)。这样就产生了这样的解释:“天空正在闪电”本来是进入意识中的一个“经验”,而现在也可以解释为一个(客观的)“事件”了。当我们谈到“实在的外部世界”时,所指的就是所有事件的总和。   我们已经看到,我们感到必须为我们的经验规定一种时间排列,大体上如下所述。如果β尺于α,而γ又迟于β,则γ也尺于α(“经验的序列”)。对于我们已经与经验联系起来的“事件”而言,这方面的情况又是如何的呢?乍看起来似乎显然可以假定事件的时间排列是存在的,这种排列与经验的时间排列是一致的。一般来说,人们已不自觉地作出了这个假定,直到产生疑问为止。为了获得客观世界的观念,还需要有另一个辅助概念:事件不仅确定于时间,而且也确定于空间。   在前几段中我们曾试图描述空间、时间和事件诸概念在心理上如何能与经验联系起来。从逻辑上说业,这些概念是人类智力的自由创造物,是思考的工具,这些概念能把各个经验相互联系起来,以便更好地考察这些经验。要认识这些基本概念的经验起源,就应该弄清楚我们实际上在多大的范围内受这些概念的约束。这样我们就可以认清我我们所具有的自由;要在必要的时间合理地利用这种自由总是相当困难的。   这里关于空间-时间-事件诸概念(我们将把这些概念螽称为“类空”概念,以有别于心理学方面的要领的心理起源方面,我们还要作一些必要的补充。我们曾经利用箱子以及在箱子里面排列物质客体的例子把空间概念与经验联系起来。因此,此种概念的形成就已经以物质客体(例如“箱子”)的概念为前提。同样,对于客观的时间要领的形成人也起着物质客体的作用。所以,依我看来,物质客体概念的形成必须先于我们的时差空概念。   所有这些类空概念,与心理学方面的痛若、目标和目的等一类的概念一样,同属于现代科学兴起以前的思想。目前物理思想的特点,和整个自然科学思想的特点一样,是在原则上力求完全用“类空”概念来说明问题,力求借助于这些概念来表述一切具有定律形式的关系。物理学家设法把颜色和音调归之于振动;生理学家设法把思想和痉归之于神经作用。这样就从事件存在的因果关系中消除了心理因素,这种心理因素从而在任何情况下都不构成因果关系中的一个独立环节。目前“唯物主义”一词无疑正是指的这种观点,亦即认为完全用“类空”要领来理解一切关系在原则上是可能的。(因为“物质”已失去了作为基本概念的地位。)   为什么必须把自然科学思想中的基本观念从柏拉图的奥林巴斯天界上[希腊神话传说奥林巴斯山(在希腊北部)是太古时代希腊诸神居住之处,这里指很大的架势而言。——译者注]拖下来并设法把它们的世俗血统揭发出来呢?答曰为了使这些观念摆脱与世隔绝的禁令,从而能够在构成观念或要领方面获得更大的自由。休谟和马赫首先提出这种中肯的想法,他们在这方面具有不配的功劳。   科学从科学发展前的思想中将空间、时间和物质客体(其中重要的特例是“固体”)的概念接收过来,加以修正,使之更加确切。在这方面第一个重要的成就是欧几里得几何学的发展。我们决不应该只看到欧几里得几何学的公理体系而看不到它的经验起源(把固体铺展开来或拼靠在一起的可能性)。具体说来三维性和欧几里得特性都是起源于经验的(空间可以完全用结构相同的“立方体”充满)。   由于发现了刚性的物体是不存在的,使得空间概念更加微秒了。一切物体都弹性形变,它们的体积随着温度的变化而改变。因此,几何结构(其全等的可能性由欧几里得几何学来描述)的表示不能脱离物理概念。但是由于物理学毕竟还须假手于几何学始能建立其中的一些概念,因而几何学的经验性内容只能就整个物理学的体制来陈述和检验。   关于这个空间概念还不能忘却原子论及其对物质的有限的可分割性的概念;因为比原子还小的空间是无法量度的。原子论还迫使我们在原则上放弃认为可以清楚地和静止地划定固体界面的这种观念。严格说来,甚至在宏观领域中,对于相互接触的固体的可能位形而言,精确的定律也是不可能有的。   尽管如此,还是没有人想放弃空间概念。因为在自然科学的最圆满的整个体系,中,空间概念看来是不可缺少的,在十九世纪,惟有马赫曾经认真地考虑过舍弃空间概念,而用所有质点之间的瞬时距离的总和的要领来代替它。(他这样做是为了试图求得对惯性的满意的理解。   (1)场   在牛顿力学中,空间和时间起着双重作用。第一,空间和时间起着所发生的物理事件的载体或框架的作用,相对于此载体或框架,事件是由其空间坐标和时间来描述的。原则上物质被看作是由“质点”所组成,质点的运动构成物理事件。倘若我们要把物质看作是连续的,我们只能在人们不愿意或不能够描述物质的分立结构的情况下暂时作这样的假定,在这种情况下,物质的微小部分(体积元)同样可以当作质点来处理;至少我们可以在只考运动而不考虑此刻不可能或者没有必要归之于运动的那些事件(例如温度变化、化学过程)的范围内照这样来处理。空间和时间的第二个作用是当作一种“惯性系”。在可以设想的所有参考系中,惯性系被认为具有这样的好处,就是惯性定律对于惯性系是有效的。   这里,主要之点是:人们曾设想,不依赖于主观认识的“物理实在”是由空时(为一方)以及与空时作相对运动的永远存在的质点(为另一方)所构成(至少在原则上是这样)。这个关于空时独立存在的观点,可以用这种断然的说法来表达,如果物质消失了,空时本身(作为表演物理事件的一种舞台)仍将依然存在。   理论的发展打破了这种观点。这个发展最初似乎与空时问题毫下相干。这个发展就是再现了场的概念以及最后在原则上要用这个概念来取代粒子(质点)观念的趋势。在经典的体制中,场的概念是在物质被看作连续体的情况中作为一种辅助性的概念而出来的。命名如,在考虑固体的热传导时,物体的状态是由物体每一点在每一个确定时刻的温度来描述的。在数学方法上,这就是意味着将温度T表示为温度场,亦即表示为空间坐标的时间t的一个数学表示式(或函数)。热传导定律被表述为一种局部关系(微分方程),基中包括热传导的所有特殊情况。这里,温度就是场的概念的一个简单的例子。这是一个量(或量的复合),是坐标和时间的函数。另一个例子就是对液体运动的描述。在每一个点上每一时刻都有一个速度,其值即由该速度对于一个坐标系的轴的三个“分量”来加以描述(矢量)。这里,在每一个点的速度的各个分量(场分量)也是坐标(x,y,z)和时间(t)的函数。   上面所提到的场的特性是它们只存在于有质之中;它们仅仅用来描述这种物质的状态。按照场概念的历史发展看来,没有物质的地方就不可能有场存在。但是,在十九世纪的头二十五年中,人们证明,如果把光看作一种波动场——与弹性固件的机械振动场完全相似,那么光的士涉和运动现象就能够解释得极为清楚。因此人们就感到有必要引进一种在没有有质物质的情况下也能存在于“一无所有的空间”中的场。   这一情况产生了一个自相矛盾的局面。因为,按照其起源,场概念似乎仅限于描述有质全内部的状态。由于人们确信每一种场都应看作此场概念只应限于描述有质体内部的状态这一点就显得更加确切了。因此人们感到不得不假定,甚至在一向被认为是一无所有的空间中也到处存在着某种形式的物质,这种物质称为“以太”。   将场概念从场必须有一个机械载体与之相联系的假定中解放出来,这在物理思想发展中是在心理方面最令人感到兴趣的事件之一。十九世纪下半叶,从法拉第和麦克斯韦的研究成果中越来越清楚地看到,用场描述电磁过程大大胜过了以质点的力学概念为基础的处理方法。由于在电动力学中引进场的概念,麦克斯韦成功地预言了电磁波的存在,由于电磁波与光波在传播速度方面是相等的,它们在本质上的同一性也是无可怀疑的了。因此、光学在原则上就成为电动力学的一部分,这个巨大成就的一个心理效果是,与经典物理学的机械唯物论体制相对立的场概念逐渐赢得了更大的独立性。   但是最初人们还是认为理所当然地必须把电磁场解释为以大的状态,并且极力设法把这种状态解释为机械性的状态。由于这种努力总是遭到失败,科学界才逐渐接受了放弃此种机械解释的主张。然而人们仍然确信电磁场必然是以大的状态,十九世纪和二十世纪之交,情况就是这样。   以太学说带来了一个问题:相对于有质体而言,以大的行为从力学观点看来是怎样的呢?以太参与物体的运动呢、还是以太各个部分彼此相对地保持静止状态呢?为了解决这个问题,人们曾经做了许多巧妙的实验,这方面应提到下列两个重要事实:由于地球周年运动而产生的恒星的“光行差”和“多普勒效应”——即恒星相对运动对其发射到地球上的光的频率上的影响、(对已知的发射频率而言)。对于所有这些事实和实验的结果,除了迈克耳孙上莫雷实验以外,洛沦兹根据下述假定都作出了解释。这个假定就是以太不参与有质体的运动,以太各个部分相互之间完全没有相对运动。这样,以大看来好象就体现一个绝对静止的空间。但是洛伦兹的研究工作还取得了更多的成就。洛伦兹根据下述假定解释了当时所知道的在有质体内部发生的所有电磁和光学过程。这就是,有质物质对于电场的影响一以及电场对于有质物质的影响一完全是由于:物质的组成粒子带有电荷,而这些电荷也参与了粒子的运动,洛伦兹证明了,迈克耳孙-莫雷实验所得出的结果至少与以太处于静止状态的学说并不矛盾。   尽管肩有这些辉煌的成就,以大学说的这种光景仍然不能完全令人满意,其理由有如下述:经典力学(无可怀疑,经典力学在很高的近似程度上是成立的)告诉我们,一切惯性系或惯性“空间”对于自然律的表达方式都是等效的;亦即从一惯性系过渡到另一惯性系,自然律是不变的。电磁学和光学实验也以相当高的准确度告诉我们同样的事实。但是,电磁理论基础却告诉我们,必须优先选取一个特别的惯性系,这个特别的惯性系就是静止的光以太,电磁理论基础的这一种观点实在非常不能令人满意,难道不会有也简经典力学那样去支持惯性系的等效性(狭义相对性原理)的修正理论么?   狭义相对论囱答了这个问题。狭义相对论从麦克斯韦-洛伦兹理论中采角了关字在真空中光速保持恒定的假定。为了使这个假定与惯性系的等效性(狭义相对性原理)相一致,必须放弃“同时性”,带有绝对性质的观念;此外,对于从一个惯性系过渡到另一个惯性系,必须引用时间和全向坐标的洛伦兹变换:狭义相对论的全部内容包括在下述公设中:自然界定律对千洛伦兹变换是不变的:这个要求的重要实质在于它用一种确定的方式限定了所有的自然律。   狭义相对论对于空间问题的观点如何?首先我们必须注意不要认为实在世界的四维性是狭义相对论第一次提出的新看法。甚至早在经典物理学中,事件就由四个数来确定,即三个空间坐标和一个时间坐标;因此全部物理“事件”被认为是寓存于一个四维连续流形中的。但是,根据经典力学,这个四维连续区客观地分割为一维的时间和三维的空间两部分,而只有三维空间才存在着同时的事件。一切惯性系都作了同样的分割。两个确定的事件相对于一个惯性系的同时性也就含有途向个事件相对手一切惯性系的同时性。我们说经典力学的时间是绝对的就是这个意思。狭义相对论的合法则与此不同。所有与一个选定的事件同时的诸事件就一个特定的惯性系而言确实是存在的,但是这不再能说成为与惯性系的选择无关的了的了。于是四维连续区不再能够客观地分割为两个部分,而是整个连续区包含了所有同时事件;所以“此刻”对于具有空间广延性的世界失去了它的客观意义。由于这一点,如果要表未客观关系的意义而不带有不必要的国袭的任意性话,那未空间和时间必须看作是具有客观上不可分割性的一个四维连续区。   狭义相对论揭示了一切惯性系的物理等效性,因而也就证明了关于静正的以大的假设是不能成立的、因此必须放弃将电磁场看作物质载体的一种状态的观点。这样,场就成为物理描述中不能再加分解的基本概念,正如在牛顿的理论中物质概念不能再加分解一样。   到目前为止,我们一直把注意力放在探讨狭义相对论在哪一方面修改了空时概念,现在我们来看看狭义相对论从经典力学吸取了哪些基本观念。在狭义相对论中,自然律也是仅在引用惯性系作为空时描述的基础时才是有效的。惯性原理和光速恒定原理只有对于一个惯性系才是有效的。场定律也是只有对于惯性系才能说是有意义和有效的。因此,如同在经典力学中一样,在狭义相对论中,空间也是表述物理实在的一个独立部分。如果我们设想把物质和场移走,那么惯性空间(或者说得更确切些,这个空间连同联系在一起的时间)依然存在。这个四维结构(闵可夫斯基空间)被看作是物质和场的载体。各惯性空间连同联系在一起的时间,只是由线性起来的一种特选的四维坐标系。由于在这个四维结构中不再存在着客观地代表“此刻”的作一部分,事物的发生和生成的概念并不是完全用不着了,而是更为复杂化了。因此,将物理实在看作一个四维存在,而不是象直到目前为止那样,将它看作一个三维存在的进化,似乎更加自然些。   狭义相对论的这个刚性四维空间,在某种程度上类似于洛化兹的刚性三维以太,只不过它是四维的罢了。对于狭义相对论而言,下述陈述也是合适的:物理状态的描述假设了空间是原来就已经给定的,而且是独立存在的。因此,连狭义相对论也没有消除笛卡儿对“空虚空间”是独立存在的或者竟然是先验性存在的这种见解所表示的怀疑这里作初步讨论的真正目的就是要说明广义相对论在多大的程度上解决了这些疑问。   (2)广义相对论的空间概念   广义相对论的起因主要是力图对惯性质量和引力质量的同等性有所了解。我们从一个惯性系S1来说起,这个惯性系的空间从物理的观点盾来是空虚的。换句话说,在所考虑的这部分空间中,既没有物质(按照通常的意义),也没有场(按照狭义相对论的意义)。设有另一个参考系S2相对于S1作匀加速运动。这时候S2就不是一个惯性系。对于S2来说,每一个试验物体的运动都具有一个加速度,这个加速度与试验物体的物理性质和化学性质无关。因此,相对于S2,最少就第一级近似而言,就存在着一种与引力场无法区分的状态。因此,下述概念是与可观察的事实相符的:S2也可以相当于一个“惯性系”;不过相对于S2又另存在匀)引力场(关于这个引力场的起源,这里不必去管它)。因此,当讨论的体系中包括引力场时,惯性系就失去了它本身的客观意义(假定这个“等效原理”可以推广到参考系的任何相对运动)。如果在这些基本观念的基础上能够建立起一个合理的理论,那么么这个理论本身将满足惯性质量与引力质量相等的事实,而这个事实是已被经验所充分证实的。   从四维的观点来考虑,四个坐标的一种非线性变换对应于从S1到S2的过渡。这里产生了一个问题:哪一种非线性变换是可能的,或者说,洛伦兹变换是怎样推广的?下述考虑对于回答这个问题具有决定性的意义。   设早先的理论中的惯性系具有这个性质:坐标差由固定不移的“刚性”量杆测量,时间差由静止的钟测量。对第一个假定还须补充以另一个假定,即对于静止的量杆的相对展开和并接而言,欧几里得几何学关于“长度”的诸定理是成立的。这样,经过初步的考虑,就可以从狭义相对论的结果得出下述结论:对于相对于惯性系(S1)作加速运动的参考系(S2)而言,对坐标标作此种直接的物理解释不再是可能的了,但是,如果情况是这个的话,坐标现在就只能表示“邻接”的级或秩,也就是只能表示空意愿维级,但一点也不能表示空意愿度规性质。这样我们就意识到从已有的变换推广到任意连续变换的可能性。而这里就已具有广义相对性原理的含义:“自然律对于任意连续的坐标变换必须是协变的”。这个要求(连带着自然律应具有最大可能的逻辑简单性的要求)远比狭义相对性原理更为有力地限制了一切自然律。   这一系列的观念主要是以场作为一个独立的要领为基础的。因为,对于S2有效的情况被解释为一种引力场,而并不问其是否存在着产生这个引力场的质量。借助于这一系列的观念,还可以理解到为什么纯引力场定律比起一般的场(例如在有电磁场存在的时候)的定律来,它与广义相对论有更为直接的联系。也就是说,我们有充分的理由假定,“没有场”的闵可夫斯基空间表示自然律中可能有的一种特殊情况,事实上这是可以设想的最简单的特殊情况。就其度规性质而言,这样的空间的特性可由下述的方式表示:等于一个三维“类空”截面上无限接近的两点的空间间隔的实测值(用单位标准长度量度)的平方(毕达哥拉斯定律);而dx4(x1,x2,x3)的两个事件的时间间隔(以适当的计时标准量度)。这一切只不过是意味着将一种客观的度规意义赋予下面这个量      (1)   这点也不难借助于洛伦兹变换来予以证明。从数学观点上来说,这个事实对应于这个条件:dS2对于洛伦兹变换是不变的。   如果按照广义相对性原理的意义,令这个空间(参照方程(1))作一任意连续的坐标变换,那么这个具有客观意义的量dS在新的坐标系中即以下列关系式表示:   此式的右边要对指标I和k从11,12,.直到44的全部组合求和。这里诸项也并不是新坐标的任意函数,而是必须正好使形式(la)经过四个坐标的连续的变换仍能还原为形式(1)的这样一类函数。为了使这一点成为可能,诸函数gik必须满足某些普遍协变条件方程,这些方程是在建立广义相对论以前半个多世纪时由黎曼导出的(“黎曼条件”)。按照等效原理,当诸函数gik满足黎曼条件时,(la)就以普遍协变形式描述了一种特殊的引力场。   由此推论,当黎曼条件被满足时,一般的纯引力场的定律即必然被满足;但这个定律必然比黎曼条件弱或限制得较少。这样,纯引力的场定律实际上即可完全确定。这个结果不想在这里详加论证。   现在我们已有可能来考察一下,对空间概念要作多么大的修改才能过渡到广义相对论去。按照经典力学以及按照狭义相对论,空间(空时)的存在不依赖于物质或场。为了能够描述充满空间并依赖于坐标的东西,必须首先设想空时或惯性系连同其度规性质是已经存在的,否则,对于“充满空间的东西”的描述就没有意义。而根据广义相对论,与依赖于坐标的“充满空间的东西”相对立的空间是不能脱离此种“充满空间的东西”而独立存在的。这样,我们知道,一个纯引力场是可以用从解引力方程而得到的gik(作为坐标的函数)来描述的。如果我们设想将引力场亦即诸函数gik除去,剩下的就不是(1)型的空间,而是绝对的一无所有,而且也不是“拓扑空间”。因为诸函数gik不仅描述场,而且同时也描述这个流形的拓扑和度规结构性质。由广义相对论的观点判断,(1)型的空间并不是一个没有场的空间,而是gik场的一种特殊情况,对于这种特殊情况,诸函数gik——指对于所使用的坐标系而言(坐标系本身并无客观意义)——具有不领带于坐标的值。一无所有的空间,亦即没有场的空间,是不存在的。空时是不能独立存在的,只能作为场的结构性质而存在。   因此,笛卡儿认为一无所有的空间并不存在的见解与真理相去并不远。如果仅仅从有质物体来理解物理实在,那么上述观念看来的确是荒谬的。将场视为物理实在,的表象的这种观念,再把广义相对性原理结合在一起,才能说明笛卡儿观念的真义所在;“没有场”的空间是不存在的。   (3)广义的引力论   根据以上所述,以广义相对论为基础的纯引力场论已不难获得,因为我们可以确信,“没有场”的闵可夫斯基空间其度规若与(1)一致一定会满足场的普遍定律。而从这个特殊情况出发,加以推广,就能导出引力定律,并且在此推广过程中实际上可以避免任意义性。至于理论上进一步的发展,则广义相对性原理并没有十分明确地作出了决定;在过去几十年中,人们曾经朝着各个不同方向进行控索。所有这些努力的共同点是将物理实在看成一个场,而且是作为由引力场推广出来的一个场,因而这个场的场定律是纯引力场定律的一种推广。经过长期探索之后,对于这一推广我认为我现在已经找到了最自然的形式,但是我还不能判明这个推广的定律能否经得起经验事实的考验。   在前面的一般论述中,场定律的个别形式问题还是次要的。目下的问题主要是这里所设想的这种场论究竟能否达到其本身的目标。也就是说,这样的场论能否用场来透彻地描述物理实在,包括四维空间在内。目前这一代的物理学家对这个问题倾向于作否定的回答。依照目前形式的量子论,这一代的物理学家认为,一个体系的状态是不能直接规定的,只能对从该体系中所能获得的测量结果给予统计学的陈述而作间接的规定。目前流行的看法是,只有物理实在的概念这样削弱之后,才能体现已由实验证实了的自然界的二重性(粒子性和波性)。我认为,我们现有的实际知识还不能作出如此深远的理论否定;在相对论性场论的道路上,我们不应半途而废。 相 对 论 简 史 [英]史蒂芬·霍金著    十九世纪后期,科学家相信他们对宇宙的完整描述已经接近尾声。他们想象一种叫“以太”的连续介质充满了宇宙空间,就象空气中的声波一样,光线和电磁信号是“以太”中的波。   然而,与空间完全充满“以太”的思想相悖的结果不久就出现了:根据“以太”理论应得出,光线传播速度相对于“以太”应是一个定值,因此,如果你沿与光线传播相同的方向行进,你所测量到的光速应比你在静止时测量到的光速低;反之,如果你沿与光线传播相反的方向行进,你所测量到的光速应比你在静止时测量到的光速高。但是,一系列实验都没有找到造成光速差别的证据。   在这些实验当中,阿尔波特·迈克尔逊和埃迪沃德·莫里1887年在美国俄亥俄州克里夫兰的凯斯研究所所完成的测量,是最准确细致的。他们对比两束成直角的光线的传播速度,由于围着自转轴的转动和绕太阳的公转,根据推理,地球应穿行在“以太”中,因此上述成直角的两束光线应因地球的运动而测量到不同的速度,莫里发现,无论是昼夜或冬夏都未引起两束光线光速的不同。不论你是否运动,光线看起来总是以相对于你同样的速度传播。   爱尔兰物理学家乔治·费兹哥立德和荷兰物理学家亨卓克·洛仑兹,最早认为相对于“以太”运动的物体在运动方向的尺寸会收缩,而相对于“以太”运动的时钟会变慢。而对“以太”,费兹哥立德和洛仑兹当时都认为是一种真实存在的物质。   这时候,工作在瑞士首都伯尔尼的瑞士专利局的一个名叫阿尔波特·爱因斯坦的年轻人,插手“以太”说,并一次性永远地解决了光传播速度的问题。   在1905年的文章中,爱因斯坦指出,由于你无法探测出你是否相对于“以太”的运动,因此,关于“以太”的整个概念是多余的。相反,爱因斯坦认为科学定律对所有自由运动的观察者都应有相同的形式,无论观察者是如何运动的,他们都应该测量到同样的光速。   爱因斯坦的这个思想,要求人们放弃所有时钟测量到的那个普适的时间概念,结果是,每个人都有他自己的时间值:如果两个人是相对静止的,那么,他们的时间就是一致的;如果他们间存在相互的运动,他们观察到的时间就是不同的。   大量的实验证明了爱因斯坦的这个思想是正确的,一个绕地球旋转的精确的时钟,与存放在实验室中的精确时钟确有时间指示上的差别。如果你想延长你的生命,你就可以乘飞机向东飞行,这样可以叠加上地球旋转的速度,你无论如何可以获得那零点几秒的生命延长,也可以以此弥补因你进食航空食品而带来的损害。   爱因斯坦认为的对所有自由运动的观察者自然定律都相同这个前提,是相对论的基础,这样说的原因是因为,这个前提隐含了只有相对运动是重要的。虽然相对论的完美与简洁折服了许许多多科学家和哲学家,但是仍然有很多的相反意见。爱因斯坦摒弃了19世纪自然科学的两个绝对化观念:“以太”所隐含的绝对静止和所有时钟所测量得到的绝对或普适时间。人们不禁要问:相对论是否隐含了任何事物都是相对的而不再会有概念上绝对的标准了?   这种不安从20世纪20年代一直持续到30年代。1921年,爱因斯坦由于对光电效应的贡献,得到了诺贝尔物理奖【注1】,但由于相对论的复杂及有争议,诺贝尔奖的授予只字未提相对论。   到现在我仍然每周收到2至3封信,告诉我爱因斯坦错了。尽管如此,现在相对论被科学界完全接受,相对论的预言已经被无数的实验所证实。   相对论的一个重要结果是质量与能量的关系。爱因斯坦的假定光速对所有的观察者是相同的,暗示了没有可以超过光速运行的事物,如果给粒子或宇宙飞船不断地供应能量,会发生什么现象呢?被加速物体的质量就会增大,使得很难进行再快的加速,要想把一个粒子加速到光速是不可能的,因为那需要无限大的能量。质量与能量的等价关系被爱因斯坦总结在他的著名的质能方程“E=mc2”中,这或许是能被大街小巷妇孺皆知的唯一一个物理方程了。   铀原子核裂变成两个小的原子核时,由于很小一点的质量亏损,会释放出巨大的能量。这就是质能方程众多结论中的一个。1939年,第二次世界大战正阴云密布,一组意识到裂变反应应用的科学家说服爱因斯坦战胜自己是和平主义者的顾忌,去给当时的美国总统富兰克林·德拉诺·罗斯福写信,劝说美国开始核研究计划,这铸就了曼哈顿工程和1945年在广岛上空原子弹的爆炸。有人因原子弹而责备爱因斯坦发现了质能关系,但是这种责难就像因有飞机遇难折戟而责备牛顿发现了万有引力一样。爱因斯坦没有参与曼哈顿工程的任何过程并惊惧于那巨大的爆炸。   尽管相对论与电磁理论的有关定律结合得非常完美,但它与牛顿的重力定律不相容。牛顿的重力理论表明,如果你改变空间的物质分布,整个宇宙中重力场的改变是同时发生的,这不但意味着你可以发送比光速传播更快的信号(这是为相对论所不容的),而且需要绝对或普适的时间概念,这又是为相对论所抛弃的。   爱因斯坦从1907年就知道了这个不相容的困难,那时他还在波恩的专利局工作,但直到1911年,爱因斯坦在德国的布拉格工作时,他才深入思考这个问题。爱因斯坦意识到加速与重力场的密切关系,在密封厢中的人,无法区分他自己对地板的压力是由于他处在地球的重力场中的结果,还是由于在无引力空间中他被火箭加速所造成的。(这些都发生在“星际旅行”【注2】的时代之前,爱因斯坦是想到人处在电梯中而不是宇宙飞船中。但我们知道,如果不想让电梯碰撞的事情发生,你不能在电梯中加速或自由坠落许久)如果地球是完全平整的,人们可以说苹果因重力落在牛顿头上,与因牛顿与地球表面加速上升而造成了牛顿的头撞在苹果上是等价的。但是,这种加速与重力的等价在地球是圆形的前提下不再成立,因为在地球相反一面的人将会被反向加速,但两面观察者之间的距离却是不变的。   1912年在转回瑞士苏黎士时,爱因斯坦来了灵感,他意识到如果真实几何中引入一些调整,重力与加速的等价关系就可以成立。爱因斯坦想象,如果三维空间加上第四维的时间所形成的空间-时间实体是弯曲的,那结果是怎样的呢?他的思想是,质量和能量将会造成时空的弯曲,这在某些方面或许已经被证明。像行星和苹果,物体将趋向直线运动,但是,他们的径迹看起来会被重力场弯曲,因为时空被重力场弯曲了。   在他的朋友马歇尔·格卢斯曼的帮助下,爱因斯坦学习弯曲空间及表面的理论,这些抽象的理论,在玻恩哈德·瑞曼将它们发展起来时,从未想到与真实世界会有联系。1913年,在爱因斯坦与格卢斯曼合作发表的文章中,他们提出了一个思想:我们所认识的重力,只是时空是弯曲的事实的一种表述。但是,由于爱因斯坦的一个失误(爱因斯坦是个真正的人,也会犯错误),他们当时未能找出联系时空弯曲的曲率与蕴含于其中的能量质量的关系方程。   在柏林时,爱因斯坦继续就这个问题进行工作,他没有了家庭的烦扰【注3】,在很大程度上也未被战争所影响。1915年11月,爱因斯坦最终发现了联系时空弯曲与蕴含其中的能量质量的关系方程式。 1915年夏天,在访问哥廷根大学期间,爱因斯坦曾与数学家戴维·希尔波特讨论过他的这个思想,希尔波特早于爱因斯坦几天也找到了同样的方程式。尽管如此,正如希尔波特所承认的,这种新理论的荣誉应属于爱因斯坦,而正是爱因斯坦将重力与弯曲时空联系起来。这还应感谢文明的德国,因为,是在那里,在当时的战争期间,这样的科学讨论及交流仍能够得以不受影响地进行,与20年后(指二战,编者注)所发生的事形成多么大的对比!   关于弯曲时空的新理论叫做“广义相对论”,以区别与原初不包含重力的理论,而那个理论被改称为“狭义相对论”。1919年,“广义相对论”被以颇为壮观的形式证明:当时的一只英国科学考察队远征到西非,在日食期间观察到天空中太阳附近一颗恒星位置的微小移动。正如爱因斯坦所预言的:恒星所发出的光线,在经过太阳附近时,由于太阳的引力而弯曲了。这是证明时空弯曲的一个直接证据,从公元前300年欧几里得完成他的《原本》后,这是一个人类感知他们存在于宇宙的最大的革命性的更新。   爱因斯坦的“广义相对论”将“时空”由被动的事件发生背景转化为动态宇宙中的主动参与者,这导致了居于科学前沿的一个巨大困难,在20世纪结束之际仍未解决。宇宙充满了物质,物质又导致时空弯曲而使得物体相互聚集。在用“广义相对论”解释静态的宇宙时,爱因斯坦发现他的方程式是无解的,为变通他的方程式而适应静态宇宙,爱因斯坦加入了一个称为“宇宙常量”的项,这个“宇宙常量” 将时空再弯曲,以使所有的物体分离开,“宇宙”常量引入的排斥效果将平衡物体的相互吸引作用而允许宇宙的长久平衡。   事实上,这成了在理论物理历史上人类丧失的最大机遇之一。如果爱因斯坦继续在这一方向上工作下去而不是变通的引入“宇宙常量”,他可能能够预言宇宙是在扩张还是在收缩。然而,直到20年代,当坐落在威尔逊山上的100英寸的天文望远镜观察到离我们越远的星系在以越快的速度远离我们时,宇宙依时间而变化的可能性才被郑重地加以考虑。换一句话说,宇宙正在扩展,任何两个星系之间的距离正在随着时间的推移而稳定地增加。爱因斯坦后来称“宇宙常量”的提出是他一生中最严重的错误。   “广义相对论”彻底改变了人们对宇宙的起源及归宿的讨论方向。静止的宇宙可能会永久存在,或者说,在过去的某个时间,当这一静止的宇宙产生时,它就已经是现在的形态了。从另一方面来说,如果现在星系们正在彼此远离,它们在过去的时间里应该是彼此之间更为接近的。在大约150亿年前,它们甚至可能彼此接触,相互重叠,而且它们的密度可能是无穷大。根据“广义相对论”,宇宙大爆炸标志着宇宙的起源,时间的开始。从这个意义上说,爱因斯坦不仅仅是过去 100年中最伟大的人物,他应该获得人们更长久的尊重。   在黑洞中,空间与时间是如此的弯曲,以至于黑洞吸收了所有的光线,没有一丝光线可以逃逸。“广义相对论”因此预言时间应终止于黑洞中。但是,广义相对论方程并不适用于时间的开始与终结这两种极端情形。因而这一理论并不能揭示从大爆炸中究竟产生了什么。一些人认为这是上帝万能的一种象征,上帝可以以他想要的方式来开创宇宙。   但是另一些人(包括我自己)认为宇宙的起源应该服从于一种任何时候都成立的普适原理。在朝这一方向的努力中,我们已取得了一些进展,但距完全理解宇宙的起源还相差甚远。广义相对论不能适用于大爆炸的原因在于,它与20世纪初另一伟大的概念性的突破——— 量子理论并不相容。量子理论的最初提出是在1900年,当时在柏林工作的麦克斯·普朗发现,从红热物体上发出的辐射可以解释为光线是以有特定大小的能量单元发出的,普朗克把这种能量单元称为量子。打一个比方,辐射像是一包包的白糖,在超级市场里,并不是你想要多少的量都行,你只能买每袋一磅的包装。1905年,爱因斯坦在他撰写的一篇论文中,提到普朗克的量子假设可能可以解释光电效应,即某些金属在收到光照时会释放电子的现象。这一效应是现代光探测器和电视照相得以应用的基础,爱因斯坦也因此获得了1921年的诺贝尔奖。   爱因斯坦对量子构想的研究直至20年代,当时哥本哈根的华纳· 海森堡、剑桥的保尔·狄拉克以及苏黎士的埃文·薛定谔提出了量子机制,从而展示了描述现实的新画卷。根据他们的理论,小粒子不再具有确定的位置和速度,相反,小粒子的位置测得越精确,它的速度测量就愈不准确。反之亦然。   对于这种基本定律中的任意性和不可预知性,爱因斯坦惶惑不已,他最终未能接受量子机制。他的著名的“上帝并未在掷骰子”的格言就表达出了这一感受。虽然如此,大多数科学家都接受了全新的量子机制定律,并对其适用性加以承认,因为这些定律不但与实验结果吻合极好,而且可以解释许多先前无法解释的现象。这些定律成了当代化学、分子生物学以及电子学得以发展的基础,也是在过去半个世纪内改变整个世界的科技基石。   1933年,纳粹统治了德国,爱因斯坦离开了这个国家,也放弃了他的德国国籍。他在新泽西州普林斯顿的尖端科学研究所度过了他生命最后22年的时光。纳粹发起了一场反对“犹太科学”及犹太科学家的运动(犹太科学家被驱逐是德国未能建成原子弹的原因之一),而爱因斯坦及他的相对论是这场运动的主要目标。当被告知一本名为《反对爱因斯坦的100位科学家》的书得以出版时,爱因斯坦回答,为什么要100位?一位就足以证明我错了,如果我真的错了的话。   二战后,他敦促盟军设立一个全球机构以控制核武器。1952年,他被刚成立的以色列授予总统职位,但他拒绝了。“政治是暂时的,” 他写道,“而方程式是永恒的。”广义相对论方程是他最好的墓志铭和纪念碑。它们与宇宙一起永不腐朽。   在过去的100年中,世界经历了前所未有的变化。其原因并不在于政治,也不在于经济,而在于科学技术——直接源于先进的基础科学研究的科学技术。没有科学家能比爱因斯坦更代表这种科学的先进性。(本文略有删节)   【注1】爱因斯坦早在1919年与他的苏黎士专门学院同学、塞尔维亚族妻子米列娃·玛莉科离婚时,就已经答应将诺贝尔奖给予她。当时爱因斯坦已经确信自己将可以得到诺贝尔奖,只是没有想到获奖是由于他对光电效应的贡献。   【注2】星际旅行,“Star Trek”是全美正在上映的热门电视剧。   【注3】米列娃·玛莉科初陪爱因斯坦到柏林,旋即离开,携他们的两个儿子回瑞士,三年后离婚。后爱因斯坦与有一个女儿的当时离异的表妹爱尔莎结合,爱尔莎给予了爱因斯坦无微不至的关怀,伴他度过探索“广义相对论”的岁月。玛莉科对爱因斯坦创立“狭义相对论”有所贡献,但她从未提起,离婚后她从事数学和物理教学。 相对论和量子论 科恩著    无论是对非科学家还是对科学家来说,相对论简直就是本世纪科学革命的同义语,而对于那些知情者来说,量子论(尤其是它的发展形式量子力学)是一次更为伟大的革命。我们将看到爱因斯坦作为科学家的伟大之处,他对这两场革命都做出了根本性的贡献。   谈到相对论,我们必须记住有两种不同的相对论理论:一是狭义相对论(1905),它研究时间,空间和同时性问题,由此推导出著名的质能关系式E=mc2。二是广义相对论(1915),它研究引力问题。尽管两种相对论都是革命性的,但对相对论革命的探讨主要集中在狭义相对论的结果上。然而,真正促成全世界对狭义相对论引起重视的事件是1919年广义相对论的一个预言——星光经过太阳附近时,会因太阳引力场的作用而发生偏转——获得了证实。这次验证是在一次日蚀时进行的天文观测完成的,这一事件立即使相对论风靡全世界,而爱因斯坦也一夜之间成了家喻户晓的人物。   狭义相对论   爱因斯坦于1905年首次提出狭义相对论原理,论文发表在《物理学年鉴》上,同年,他对狭义相对论作了重要补充,并为辐射问题建立了最初形式的质能关系式。1907年,爱因斯坦完成了一篇的相对论的综述文章,其中包含一般形式的质能关系式E=m2。他的卓越论文建立了全新的质量,时间和空间概念,并向明显简单的同时性观念提出了挑战。最初,爱因斯坦提出了“相对性原理”,并引进了“另一个假设”:“在任何给定的惯性系统中,无论发光物体是处于静止状态还是在作匀速运动,光在真空中的传播速度都是一个确定值C”。相对论的伟大意义在于,它抛弃了“绝对”时空观以及空间充满了以太的思想;而在当时,以太被视为是光和其它形态电磁波的传播媒介。   现在看来,1905年6月爱因斯坦关于相对论的开创性论文在《物理学年鉴》上发表,是理论革命阶段的典型例子。我们在第2章中已经看到,M.玻思1905-1906年间在哥廷根研究“运动物体的电动力学和光学”时,竟然从未听说过爱因斯坦和他的工作。1906-1907年间,英国剑桥大学的情况亦是如此。根据爱因斯坦妹妹的回忆(佩斯1982,150-151),爱因斯坦当时“想象在有名的,拥有众多读者的杂志上发表论文,便会立即引起注意”。当然,他期望“强烈的反对和最严厉的批评”,但缺少反响和“冷处理”反而使他“非常失望”。不久,他收到M.普朗克的一封信,就论文中几处疑点提出问题,这使爱因斯坦感到“异乎寻常的高兴”,因为普朗克是“当时最伟大的物理学家之一”。相对论后来迅速变成了物理学家感兴趣的议论和研究课题。这种戏剧性转变主要是由于普朗克较早且较深入地介入了相对论研究所引起的。爱因斯坦论文发表的第二年,普朗克就开始在柏林讲授相对论理论,但他当时讲演的基础不是爱因斯坦的工作而是洛伦兹的电子论。1907年,普朗克的助手冯·劳厄(后来的诺贝尔奖金获得者)发表了一篇关于相对论的专论。   1906年9月,普朗克在德国物理学会上发表了关于相对论的演讲(同年刊登在杂志上);1907年,在普朗克的指导下,K.V.莫森格尔完成了第一篇专论相对论的博士论文(佩斯1982,150-151)。佩斯指出,早期介入这一领域的人实在是太少了。乌尔茨堡的Y.劳布和布莱斯劳(乌罗斯劳)的L.拉登伯格是为数不多的几个例外。劳厄曾经来到伯尔尼拜访爱因斯坦,他发现难以置信的是,这个‘年轻人”竟然是“相对论之父”。几年后,冯·劳厄撰写了一篇非常出色的介绍相对论的学术论文。冯·劳厄在1917年3月24日写给爱因斯坦的信中,表达了对自己的物理学革命性工作的兴奋之情:“终于实现了!我的关于波动光学的革命观点发表了”。他接着写道:在“这一紧要关头”,它们“无疑会激起每一个保守的物理学家最强烈的憎恨”;但“我仍然要坚持这些备受谴责的观点”。   除了队玻恩自己介绍了他是怎样每一次听说相对论的之外,我们还从L.英费尔德那里了解到当时的一些情形。英费尔德(1950,44)曾谈到他的朋友S.洛里亚教授告诉他的一件事,洛里亚的老师“克拉克大学的维特科夫斯基教授(他是一位非常伟大的教师)”读了爱因斯坦1905年关于相对论的论文后,冲着洛里亚兴奋地喊道:“读读爱因斯坦的论文吧,又一个哥白尼诞生了!”又过了一段时间(玻恩说是1907年)洛里亚在一次物理学会议上遇到了玻恩,他向被恩谈起爱因斯坦,并问他是否读过那篇相对论论文。结果,“不光是玻恩,在场的每一位都从未听说过爱因斯坦”。英费尔德的故事说,他们立即“跑到图书馆,从书架上取出《物理学年鉴》第17卷,开始读起爱因斯坦的论文”。英费尔德说,M.玻恩立即认识到相对论的伟大,同时感到有必要对它进行数学形式化。英费尔德认为,玻思后来对相对论的研究工作,“是早期对这一科学领域做出的重要贡献”。   最初,表示愿意接受爱因斯坦狭义相对论的物理学家很少,因此不足以在世界范围内引发一场科学革命。但德国理论物理学家中却有一部分拥护者。1907年7月,普朗克在致爱因斯坦的信中说:“相对论原理的倡导者仅仅形成了一个不大的圈子”,由此他坚信,他们之间“取得意见一致尤显重要”(佩斯1982,151)。“相对论原理”既体现了普朗克个人偏爱的洛伦兹理论,也体现了爱因斯坦的相对论,然而,爱因斯坦的声望在持续增长,尽管仍然缓慢,1907年秋,J.斯塔克(《放射性和电学年鉴》的编辑)写信给爱因斯坦,要求他写一篇相对论的评述文章。1906年普朗克曾使用过相对性理论的术语(米勒1981,88),但1907年爱因斯坦采用了今天人们更熟悉的名称——相对论。第一篇引用爱因斯坦相对论论文的文章是W.考夫曼1905年撰写的。他认为爱因斯坦的“研究……与洛伦兹的研究在形式上是相同的”,只不过后者有益于推广。考夫曼最后说,他自己的实验数据驳倒了爱因斯坦和洛伦兹的电子理论,我们将稍后再来研究这个问题。   lop年,B.爱伦菲斯特写了一篇以爱因斯坦理论为主题的论文。第二年(1908),H.闵科夫斯基发表文章,把爱因斯坦理论从根本上转化为数学形式,“大大简化了狭义相对论”。经过这样几个步骤,理论革命才变成了真正的科学革命。佩斯(1983,152)指出,从1908年开始,爱因斯坦的名声及影响迅速提高。   爱因斯坦的学术生涯开始坦荡起来了。1909年春,他从伯尔尼瑞士专利局一个地位低微的审查员,一跃而成为苏黎士大学理论物理学助理教授,这很明显是由于他在固体量子论方面所做的工作。爱因斯坦的推荐人之一写道:爱因斯坦“当属最伟大的理论物理学家之列”(佩斯1982,185)。“由于相对论原理方面的工作,他正受到极其广泛的重视”。lop年7月8日,爱因斯坦获得了日内瓦大学的荣誉学位,同时获得这项荣誉的还有化学家W.奥斯特瓦尔德和M.居里夫人,他在这个职位上只呆了两年,1911年3月他来到了布拉格,晋升为德国卡尔·费迪南大学正教授。在那里工作了16个月后,F.弗兰克接替了这个职位。爱因斯坦又返回苏黎士,担任综合技术学院的物理学教授。   当然,影响接受狭义相对论的困难主要是观念上的,但也的确存在实验上的障碍。在1905年开创性的论文的结尾,爱因斯坦推导出一个电子横质量公式。这个公式与洛伦兹理论中的公式极其相似,其中的差异很快就被消除了。于是,这两种理论能给出相同的结果。但是,考夫曼在分别发表于1902和1903年的论文中指出,他的实验结果与洛伦兹理论(同样适用于爱因斯坦理论)的预言有很大差异,爱因斯坦对这些结果无动于衷(见米勒1981,81-92;333—334)。1906年,考夫曼在《物理学年鉴》(一年前爱因斯坦发表相对论论文的同一杂志)发表了一篇文章,详细归纳了爱因斯坦的时空观(米勒1981,343),并探讨了洛伦兹-爱因斯坦电子理论。他总结道,他自己的测量结果于洛伦兹-爱因斯坦理论的“基本假设是不相容的”(见霍尔顿1973,189-190;234-235)。洛伦兹因此写了一封信给彭加勒(米勒1981,334-3371982,20-21),说他自己的“心智已经枯竭”。他对彭加勒说,“不幸的是”,他的假说“与考夫曼的新实验矛盾”,他认为“不得不放弃它”。但爱因斯坦却坚信:实验数据与理论间“系统误差”的存在说明有“未被注意的误差源”;新的更精确的实验一定会证实相对性理论。爱因斯坦的话得到了证实,1908年,A.H.布歇尔发表了新的实验结果,完全符合洛伦兹和爱因斯坦的预言。1910年,E.胡普卡的实验对此再次予以确证。而决定性的结果是1914-1916年间获得的。从那以后,各种表明相对论正确性的论据不断出现,且极为丰富。   随着实验证据的出现,相对论本身进行了根本性的重构。这项工作是哥廷根大学数学教授H.闵科夫斯基完成的。有趣的是,几年前,阅科夫斯基在苏黎世大学教过爱因斯坦数学。1908年,闵科夫斯基发表论文,引进四维“时空”概念,取代了孤立的三维空间与外加一维时间的不相容概念,他还把相对论转化为现代张量形式(这要求物理学家们进一步学习由里奇和列维-西维塔建立的新的数学理论),在相对论中引进专业术语,并明确指出:由相对论观点看,传统的牛顿引力理论已经不够用了(佩斯1982,152)。很明显,爱因斯坦开始并没有理解闵科夫斯基工作的意义,甚至认为把他的理论写成张量形式是“多余的技巧”(同上)。但到了1912年,爱因斯坦终于转变过来了;1916年,他以感激的心情承认闵科夫斯基使他大大地简化了从狭义相对论向广义相对论的过渡。爱因斯坦(1961,56-57)后来着重强调了闵科夫斯基的贡献,他说,如果没有他,“广义相对论……也许还在襁褓中”。英译本经常采用的语句是“no furthr than its longcloths”。尽管“windel”在德文中最普遍的意思是“尿布”,但这里的含义显然是:如果没有闵科夫斯基,广义相对论一定还在孕育之中。   闵科夫斯基的时空观首次公开发表于1907年11月5日的一次演讲中,演讲的标题是“相对论原理”。但这篇演讲直至闵科夫斯基去世后六年的1915年才出版。不过借助在1908年和1909年发表的另外两篇论文,闵科夫斯基的时空观已经流传开了(加里森1979,89)。闵科夫斯基充分认识到了他的贡献的重要性。在1907年演讲时,他开宗明义地说:“先生们,我想向诸位讲述的时空观念……从根本上是全新的,……由此,孤立的空间和时间观念本身将注定要消失在阴影之中”。事实上,闵科夫斯基在这篇演讲的初稿上,把他的新时空观的“特征”说成是“革命的”,而且是“极端革命的”(同上,98)。可是,在讲演稿最后付印时,“革命的”这类词语被删除了。   M.玻恩向我们讲述他最初阅读爱因斯坦论文时的经过,这让我们了解到爱因斯坦的概念是多么深奥难懂,甚至对于那些没有数学问题的人也是如此。1907年,当洛里亚向他介绍爱因斯坦论文时,玻恩正是H.闵科夫斯基大学研究班的成员,因此,“对相对性思想和洛伦兹变换很熟悉”。他回忆说,即便如此,在阅读爱因斯坦论文时,“爱因斯坦的推理超出我的意料之外”。玻恩发现,“爱因斯坦的理论是全新的和革命性的”,是天才的创造。爱因斯坦的观点“向I.牛顿建立的自然哲学以及传统时空观大胆提出了挑战”。现在看来,玻恩确实认识到了爱因斯坦思想革命和理论革命的威力,但也清醒地看到了真正的科学革命尚未到来。新的观念和新的思维方式仍在研究之中,要科学家们接受、应用并作为他们共同的思想基础还须假以时日。玻恩后来明确指出,事实上,爱因斯坦理论是如此激进,如此新奇和革命,以至必须“做出相当努力才能很好地消化和吸收”。而且他还提醒我们,“并不是每个人都能够或愿意这么做”,看来他本人当初是做到了。爱因斯坦革命要求人们普遍接受关于物质世界的全新的思考方式。   1909年美国科学家G.刘易斯和R.托尔曼发表的文章,清楚地说明了接受爱因斯坦假说的实际困难。他们承认爱因斯坦的相对性原理“综合了大量实验事实,没有出现矛盾的反例”,其中他们列举布歇尔的实验作为支持这一理论的重要依据。然而,他们在感到相对论基本“原理”这一方面无可挑剔时,也感到另一方面暴露出的问题。例如,“绝对运动无法观察到”这一普遍原理表示理解时,他们觉得相对于任何独立观察者光速不变的原理令人难以接受(米勒1981,251-252)。他们认为,后一原理将导致长度和时间相对性的“奇异结论”,这可能是“基于某种感官心理学上的科学幻想”。   时间一年年地过去,越来越多的物理学家终于转变了过来。然而,他们当中有许多人只接受爱因斯坦公式,承认“收缩性”是光速不变性引起的空间问题的基础。但是,他们仍然坚持绝对时间和同时性的信仰(包括洛伦兹在内,见米勒1981,259)。1911年4月,法国物理学家B.朗之万在波隆那哲学家大会上发表演说,为相对论增添了更为轰动性的色彩。朗之万是一位卓越的科学家,爱因斯坦曾经说过,如果他没有发现狭义相对论,朗之万将会发现它。在讨论时间相对性或钟慢问题时,朗之万没有采用爱因斯坦那种利用运动时钟和静止时钟解释时间效应的费解的作法,而是用所谓的“孪生子悖论”取代了爱因斯坦的“时钟悖论”,并立即成为众所皆知的由相对论引出的怪物。相对论的时间问题是这样产生的:如果一对孪生兄弟一个留在地球上,另一个去星际空间旅行,那么当旅行的兄弟返回地球时,竟会发现与留在地球上的兄弟的年龄已经不同了。朗之万列举的另一个例子是,旅行者沿直线飞向一颗恒星,绕其一周后原路返回。如果旅行的速度足够大(当然比光速小),最后旅行者将发现,在他两年的旅行中,地球已经度过了漫长的两个世纪。哲学家H.相格森后来承认,正是朗之万19if年4月的演讲,“第一次唤起了我对爱因斯坦观念的注意”。   时钟(或孪生子)悖论很快成为(在某种程度上今天仍然是)相对论使人困惑甚至招来敌意的原因。V.劳厄曾谈到那些反对相对论的“思想内容”、基本公式或数学结果的人。1911年他写信给爱因斯坦,反对相对论的共同理由“主要是时间相对性和由此产生的悖论”。劳厄在1912年写的第一部相对论教科书中指出:这些悖论和其它有关时间相对性的问题具有“伟大的哲学意义”,正是由于这一原因,“只能用哲学方法”对待这些问题。我们还注意到,爱因斯坦在1911年讨论这一见解时,使用了理想实验的方法。他假设把装有“小生物的盒子”送向“遥远的飞行旅程”,结果在它返回地球时,“盒子的内部情况几乎没有变化”,而留在地球上的生物已“繁衍生息许多代了”。   尽管许多人不愿轻易接受爱因斯坦对物理学基本思想进行彻底重构,但他们却已在应用爱因斯坦的数学结果了。劳厄(和另一些人)曾指出,这些数学结果在形式上和洛伦兹理论的结果是一致的,但它们的‘物理本质’御有差异。劳厄甚至宣称(1911),两种理论的“实质差别是不可言喻的”。但人们很快就认识到爱因斯坦的理论更加优越,特别是在广义相对论建立之后,狭义相对论的重要性尤其显露出来。   大约到了1911年,爱因斯坦的狭义相对论已经有了数量足够多的拥护者,一场科学革命发生了。同一年,A.索末菲宣布,相对论理论已经“完整地建立起来了,它不再是物理学的前沿了”(米勒1981,257)。1912年初,刚刚获得1911年度诺贝尔物理学奖的W.维恩建议,授予爱因斯坦和洛伦兹这项最高奖赏。他在推荐书上写道:从“逻辑的观点看”,相对论原理“应当被看作理论物理学最重要的成就之一”(佩斯1982,153)。他说,目前已有“实验明确证实了这一理论”。他总结说,“洛伦兹是发现相对论原理数学内容”的第一人,而爱因斯坦则“成功地将相对论简化为一个简单的原理”。   当然,并不是所有物理学家都接受这一革命性的新观念。范德瓦尔斯在1912年说,至今还不能解释为什么质量和长度随着速度的变化而变化(米勒1981,258)。除了时间相对性引起悻论外,在否定绝对长度、时间和质量方面还引起了更根本性的反对意见,而“同时性的相对性”也是很难令人接受的。然而更加困难的是抛弃以太概念。如果没有介质支承,光和其它电磁波如何在空间存在呢?反对意见和声势如此强烈,也可看作是新理论革命性质的一个标志。   在众多的反相对论的观点中,普林斯顿大学的W.F.马吉教授(1912,293)很有代表性。19if年,他在美国物理学会作会长就职演说时说,相对论原理不能满足这样的标准:任何“真正有用的终极答案……应当为每一个人所能理解,包括训练有素的学者及一般公众”。对他来说,相对论无法使人理解,因为它不能“用普通的,任何人都能明白的力,空间和时间概念来描述”。可是他显然并不清楚,牛顿的力和惯性的概念在1687年时是多么新奇!他显然也不懂得,除了少数几个学过理论物理学的人之外,真正懂得力和概念这些“普通概念”的人是多么稀少!   马吉还宣称,“应当问问相对论发展中新思想的创造者,他们是否认识到这一理论的用途是多么有限,是否认识到它用可理解的术语描述宇宙是多么的无能为力”。他准备“警告他们最好先收起他们的辉煌理论,除非能够通过简化,利用普通物理学概念圆满解释相对论原理”。   L.T.莫尔1912年在《自然》杂志(1912,94:370-371)上发表评述文章,总结归纳了马吉演说中的观点,并就科学革命作出了以下论述:   爱因斯坦教授的相对论和普朗克教授的量子论已被喋喋不休地宣布为自牛顿时代以来科学方法上最伟大的一场革命。他们用数学符号作为科学的基础,拒绝承认数学符号背后潜在的坚实的实验基础,因而用主观宇宙取代客观宇宙。从这一角度来看,他们的做法无疑是革命的。问题是,他们这样做是前进还是倒退,是走向光明还是陷入黑暗?一般认为,伽利略和牛顿开创的革命依靠科学家们的实验方法取代了学院派的形而上学方法,这显然是正确的。而现在,所谓的新方法似乎恰恰相反,因此,如果这里包含什么思想革命的话,那事实上不过是返回到中世纪的繁琐哲学的方法中去。   大约在20年后,L.T.莫尔(现任辛辛那提大学研究生院院长)在他撰写的牛顿传记(1933,333)中,仍然表达了他对“爱因斯坦教授广义的相对论”的厌恶,他指责这是“通向唯心主义哲学的最大胆的企图;这样的哲学只是灵活思维的逻辑游戏,完全无视客观世界的事实;它或许是有趣的,但却深深陷入了经院哲学”。他总结道,如果坚持相对论物理学(及其哲学),“将导致科学颓废变质成为中世纪经院哲学和宗教神学”。读者对于莫尔污蔑数学和符号逻辑学的伟大发展也许不会感到奇怪,他写道(同上,332),“值得注意的事实是,两部伟大的著作,两部或许是科学头脑所能做出的最天才的创造,现在正受到攻击:《新工具》受到现代符号逻辑学家的攻击;《原理》受到相对论物理学的攻击”。他最后的结论是:“当现代派被长期遗忘之后,亚里士多德和牛顿将会重新受到尊重;他们的学说将重新获得应用”(同上),从这些事例中我们可以发现,一场科学革命的深度与保守主义的猖狂进攻的猛烈程度以及它给科学思想所带来的根本变化的程度是成正比的。   广义相对论   爱因斯坦曾经说过,即使他没来到这个世界上,狭义相对论也会出现,因为“时机已经成熟”(英费尔德1950,46),但广义相对论则不然。他怀疑,如果他未建立广义相对论,“它是否会为人所知”。广义相对论被称作“第二次爱因斯坦革命”(同上)。这是一次极大的飞跃,正当许多物理学家开始接受狭义相对论时,它再一次把他们抛在后面。普朗克曾以极大的热情欢迎狭义相对论并成为最早的支持者之一,他曾对爱因斯坦说:“现在一切都要解决了,你为什么还要招惹其它另一些事呢?”爱因斯坦之所以这么做是因为他是一位天才,远远走在了同时代人的前面。他懂得狭义相对论是不完满的,未能解决加速度和引力问题。他后来谈到导致他思想豁然开朗的主要思想(他曾将其称为“一生中最令自己兴奋的思想”,见佩斯1982,178引用的爱因斯坦的回忆。)是1907年11月在伯尔尼专利局工作时产生的。这个思想是:“一个人在自由下落时,将感觉不到自己的重量。”他说,这一“最简单的思想”促使他天。始研究引力理论,但直到1915年,他才发表了比较完整的广义相对论理论,第二年他又发表了被一位传记作家称为“钦定版本”的广义相对论,这个理论的建立主要基于英费尔德所说的“三个主题”:引力,等效原理,几何学与物理学的关系。理论的核心则是新的引力场定律和引力场方程,有人说,麦克斯韦在电磁场上做过什么工作,爱因斯坦在引力场也做过什么工作。广义相对论引人注目的特征之一是将牛顿力学中的引力简化为四维时空中的弯曲。J.H一吉恩斯在《不列颠百科全书》1922年第12版的相对论条目中写道:“宇宙图景”的新情景不再是“三维空间中一片以太海洋的受迫振动”,而是“四维空间世界线上的一个纽结”。   广义相对论提出了三个可检验的预言。第一个是水星的近日点的摄动,该现象指出,轨道上运动的行星在绕太阳运行时,每完成一个周期并非精确返回到空间的原来位置,而是稍稍有些前移。这一事实早在19世纪中叶就已发现,但经典的牛顿天体力学无法对摄动现象做出满意的解释。第二个预言是,光线在引力场中将发生偏转。按照这个说法,星光在经过太阳附近时,将受到太阳引力的影响而偏折。结果是恒星的机位会有一个变化。观测这一现象只有发生日全蚀时才能进行,否则太阳的强烈光线使地面上根本观测不到太阳附近的恒星光线(瑞士天文学家M.施瓦兹柴尔德对这个现象做了详细的定量描述)。第二个预言通常被称为谱线“红移”,即恒星辐射总是背离我们而去。这就是广义相对论提出的三项检验方法。但我们知道当时正是1915年,第一次世界大战的硝烟笼罩在各科学发达国家的上空。爱因斯坦正在柏林,不可能进行任何日蚀观测。   但爱因斯坦没有停止工作,1917年,他在《普鲁士科学院院刊》上发表论文,题为《广义相对论宇宙观》。尽管其中的结论已被抛弃,但这篇论文开辟了理论物理学的一个新领域。爱因斯坦指出,“义相对论能为我们的宇宙结构……问题带来希望之光”。科学的宇宙学研究由此创立,它把宇宙从形而上学的一个分支转变为物理学和天文物理学的一部分(英费尔德1950,72;“论爱因斯坦和宇宙学”,见佩斯1982,&15)。   英国无文学家A.爱丁顿在战时研究了爱因斯坦的著作(见第25章),并很快成为爱因斯坦思想的忠实信徒和热情宣传者。他后来写了大量著作,包括权威性的《引力相对论理论报告》(1918),学术著作《相对论的数学理论》(1923),两部通俗著作《空间,时间和引力》(1920)以及《物质世界的本质》(1928),此外还有大量的演讲,文章和小册子。P.A.M.狄拉克回忆说,他在布里斯托尔大学读书时,就是通过爱丁顿的著作才最初接触到相对论的。更为重要的是,第一次世界大战刚一结束,爱丁顿立即在1919年组织了一支英国日蚀观测队,去检测星光经过日全蚀太阳时将发生偏转的预言。与预言相符观测结果立即震撼了全世界的科学家和公众。   今天很难想像1919年世界科学界的无限兴奋之情。两支观测队分别出发,一个派往巴西的索布拉尔,另一个由爱丁顿率领来到西班牙所属圭那亚海岸附近的普林西比岛。1919年秋,观测数据进行了整理和分析后,在11月6日召开的英国皇家天文学学会和皇家学会的联席会议上天文学家们宣布:“星光确实按照爱因斯坦引力理论的预言发生了偏折。”皇家天文学会的侧察部杂志和《皇家学会会刊》都对历史性的会议作了充分报道。著名科学家J.J.汤姆森是会议主席,他宣称:这是“自牛顿以来引力理论的一项最重要的成果”,是“人类思想的最伟大的成就”。第二天,1919年11月7日,历来严谨的英国《泰晤士报》赫然出现了醒目的标题:“科学中的革命”,两个副标题是“宇宙新理论”,“牛顿观念被推翻”。11月8日,《泰晤士报》又发表了另一篇论述革命的文章,标题为“科学革命”,“爱因斯坦挑战牛顿”,“杰出物理学家的观点”。文章告诉读者,“这件事成了下议院热烈讨论的话题”;卓越的物理学家,皇家学会会员,剑桥大学J.拉莫尔教授“受到围攻,要求对牛顿是否被击败,剑桥大学是否垮台做出答复”。荷兰的报纸也迅速刊登了这一消息。H.A.洛伦兹在11月9日的《鹿特丹报》上发表文章,《纽约时报》立即翻译转载。11月23日,M.玻恩也在《法兰克福大众报》上发表文章。12月14日,爱因斯坦的照片刊登在《柏林画报》周刊的封面上,照片下的文字说明宣称:爱因斯坦开创了“人类自然观的一场革命”;他的洞察力堪与哥白尼、开普勒和牛顿相比(佩斯1982,308)。在12月4日《自然》杂志的一篇文章中,E.昆宁翰指出:爱因斯坦的“思想是革命性的”。   A.佩斯(1982,309)曾核查了自1919年11月9日开始《纽约时报》索引中有关爱因斯坦和相对论的文章标题或传奇故事。“爱因斯坦理论的胜利”与“十二智者书”连接在一起(其中谈到爱因斯坦警告出版商的话“全世界不会有再多的人懂得它”)。该报不仅刊登传奇故事,而且还发表了社论,相关文章持续见报,直至当年12月佩斯发现,从那以后直到爱因斯坦去世,《纽约时报》没有一年不刊登有关爱因斯坦的文章,爱因斯坦成了一位传奇人物。当爱因斯坦1921年去伦敦时,霍尔丹勋爵在皇家科学院的一次演讲中,把爱因斯坦引见给了大家。爱因斯坦住在霍尔丹的别墅里,当爱因斯坦来到他家时,霍尔丹的女儿见到这位著名的客人后,竟“激动得昏了过去”(佩斯1982,312)。霍尔丹在皇家科学院介绍爱因斯坦时,谈到在这次演讲之前,爱因斯坦“已经到西敏寺大教堂瞻仰了牛顿的墓地”。   自那时起直至现在,科学家和非科学家,历史学家和哲学家撰写的著作都把(广义和狭义)相对论与“革命”紧紧地联系在一起了。1912年,霍尔丹在他的著作《相对论时代》(第4章)中谈到这个问题时写道:“爱因斯坦开创了我们关于物理学观念的革命”。对于哲学家K.波普尔(惠特罗1967,25)来说,爱因斯坦使“物理学革命化”。物理学家M.玻恩(1962,2)和S.伯吉亚(1979,82)的表述分别是:爱因斯坦的“革命时空观”和“爱因斯坦革命”。玻恩(1965,2)还说:“IM年的狭义相对论”是标志物理学“古典时期的终结和新纪元的开始”的一件大事。S.温伯格(1979,22)认为,爱因斯坦最伟大的成就是,“他第一次把时间和空间纳入了物理学的体系,从而脱离了形而上学的束缚”。按照数学家A.玻莱尔(1960,3)的说法,爱因斯坦“不仅带给我们新的物理学理论,而且教给了我们认识世界的新方法”。因此,“凡是学习过他的理论的人,不可能再按他们过去的思维方式进行思考了”。西班牙哲学家J.0.伽塞特在他的著作中没有明确使用革命一词,但他却宣称:爱因斯坦的“相对论是当今最重要的智慧成果”。因此,爱因斯坦相对论在开创物理学革命的同时,也引起了一场哲学革命。   事实表明,广义相对论比狭义相对论更能满足本书第3章提出的科学革命的检验标准。但是,广义相对论的发展史比起狭义相对论来更显得艰难曲折。很长一个时期,只有天文学家(而且只是那些研究宇宙学的天文学家)对广义相对论感兴趣,物理学家则不然,S.温伯格(1981,20)指出:“在最基本的层次上研究物质的物理学的全部现代理论,在很大程度上依靠两大支柱”,一是“狭义相对论”,一是“量子力学”。塞格尔(1976,93)在回顾2O年代和30年代物理学家们的活动时,也特别指出:“与狭义相对论相对应的广义相对论,目前尚不是物理学家们感兴趣的前沿课题”。这也就是说,广义相对论与狭义相对论不同,它对于当时主要的研究课题如物质理论和辐射理论并不是必须的。例如,在我30年代末攻读物理学研究生时,几乎所有的课程如原子物理学,量子力学甚至一些基础课和专业基础课都涉及到狭义相对论,但只有少数数学家(在G.D.伯克霍夫的激发下)研究广义相对论。另外,广义相对论暗示,建立得最为成功的理论物理学的一个分支——牛顿万有引力理论——犯了一个根本性的错误或说它并不完整,而且广义相对论还引进了“四维时空的弯曲”这一奇特的概念来解释引力。我们应当懂得,伟大的1919年日蚀实验只是定性地说明了光线传播将受引力场的影响,更精确的日蚀实验则是以后的事了。但是,在爱因斯坦最初提出的三项检验方法之外,再找到新的方法可能又要过去数十年。温伯格曾指出,只有在“爱因斯坦建立他的理论40年之后”(温伯格1981,21),才能构想出并完成新的更精确的实验,证实广义相对论。   第二次世界大战结束后的几十年间,世界发生了很大的变化,在实验室进行精确的验证实验已经成为现实。于是,人们对引力的本质,引力与自然界的其它几种基本力(电磁力,强相互作用,弱相互作用)的关系问题产生了新的兴趣。庞大的物理学和天文学“工业”日益兴起,集中研究广义相对论及其在宇宙学和宇宙论研究中的应用。其他的物理学分支也是如此。结果正如S.温伯格所预言的,人们一项重要的共识是,为了“弄懂超短距离的万有引力”,还需要“另一次伟大的飞跃”(1981,24),另一次革命,“建立更加普遍适用的原理”,而目前我们对此还没有任何概念。一句话,广义相对论今天已成为科学家乐此不疲的研究课题,热情之高或许是前所未有的。   量子论的创立:普朗克和爱因斯坦   量子论在许多重要的方面与相对论有所不同。几乎每一个人都听说过相对论和他的创立者A.爱因斯坦,但只有科学家和少数非科学家(他们不是学过科学,就是对科学感兴趣。)知道量子论。然而,几乎每一个涉及到物理学某一方面的人(不仅是物理学家,也包括化学家,天文学家,生物化学家,分子生物学家,冶金学家等)都会在他们各自的工作中经常性地应用量子论及其成果。在这方面,广义相对论远远不能望其项背。量子论不仅广泛渗透到许多学科中,而且也和相对论一样,使我们的科学思想和科学哲学发生了根本变革。相对论和量子论的革命性很早就被人们认识到,但两者都长时间处在理论革命阶段。   量子论的发展经历了三个主要阶段:古典量子论(普朗克,爱因斯坦,玻尔,索未菲,康普顿),量子力学(德布罗意,薛定谔,海森伯,约尔丹,玻恩)以及最新的相对论量子力学或量子场论,前两个阶段均被视为革命。事实上,物理学家们感到很难找到足够有力的言词表述量子革命的深度和广度。W.维斯考普夫(1973,441)认为,“M.普朗克发现量子这一壮举,…创立了一门最富成果的学科,也是自然科学最具革命性的发展”。他补充说,在普朗克做出发现后的三十年间,“我们关于物质特性和行为的知识发生了广泛而深远的变革”,历史上很少有哪个时期能与之相比。P.戴维斯(1980,9)写道:“本世纪初,关于物质的量子论的出现导致科学和哲学发生了一场革命”。他指出,“耐人寻味的是,历史上几次最伟大的科学革命在很大程度上都不被一般人所注意”,他认为这是由于“革命所蕴含的摧枯拉朽之力几乎超出了人们的想像——一甚至超过了科学革命本身。”(p.11)   量子论通常被视为创立于1900年,这一年,普朗克发表了他的“作用量子”的概念。普朗克不像爱因斯坦五年后所做的那样,他没有涉及光或辐射相互作用的过程。他探讨的仅仅是容器壁上振动粒子的能量交换和黑体辐射问题。他通过研究发现,能量的交换是以跳跃的方式进行的,大小与能量值hv有关,这里的h是普朗克首次引入的自然界的普遍恒量。正如T.S.库恩所指出的,普朗克在1900年仅仅作了这样的假定:能够以频率v振动的振荡体(有形体,而非以太振动)的总能量可能是由一组与它们的频率成正比的单元能量子的集合。与后来的光量子概念相比,这个假定是非常克制的。而光量子概念则指出,光是有一个个具有确定性质的分立实体组成的,每一个实体(即光量子)具有的能量为hv。   我们很容易理解普朗克为什么没有,哪怕是设想进一步做出更为实质性的假设:光是由分立的粒子或能量小球“组成的”。首先,这样的假设对他的黑体辐射公式来说并不必要;其次,也是更重要的,它与19世纪建立的最为完善的物理学分支之———光学有着不可调和的矛盾和冲突。由麦克斯韦,赫兹以及其他人建立起来的光学理论表明,光(和各种电磁辐射)是一种波动现象,在空间传播过程中始终振荡着,显然这与所谓的分立粒子的概念是绝对不相容的。事实上,当爱因斯坦五年后公布他的光量子假说时,它本身就包含着概念上的困难。因为按照这个假说,光量子的能量取决于光的频率,光的频率又是通过测定波长换算的,而测定波长必须使用“干涉”技术,而这恰恰是几十年前波动光学理论赖以建立的实验基础。   普朗克后来谈到他大胆建立能量子概念时说,这是“孤注一掷的行动”(佩斯1982,370)。按照佩斯的说法,他的推理“是疯狂的”,但这种“疯狂却是神圣的”,“只有最伟大的划时代的人物才能把这种神圣的疯狂引人科学”。这种精神使他做出“第一次伟大的观念上的突破”,把我们这个时代的物理学与全部经典物理学区分开来;这种精神把一个非常保守的思想家“改造成一个有些犹豫不决的革命者”。尽管普朗克通常被描绘成一个违背自己意愿,被迫迈出通向量子论关键性一步的物理学家,但他在许多场合下却流露出对爱因斯坦和他自己工作所体现出的革命性的由衷称赞。他对爱因斯坦相对论极尽赞美之辞(见霍尔顿1981,14),他在一次谈话中说:“这种新的思维方式……远远高于理论科学研究,甚至知识论研究所取得的任何成就”。对普朗克来说,“相对论引发的一场物理学观念的革命,在深度与广度上只有哥白尼体系引发的天文学革命可与之相比”。普朗克在诺贝尔奖授奖仪式上所作的讲演中说,“要么作用量子是一个虚构的量,辐射定律的全部推导也是虚构的,不过是空洞而毫无意义的算术游戏;要么辐射定律的推导是以正确的物理概念为基础”。他解释说,如果是后者,那么作用量子将“在物理学中起根本性的作用”。原因是,它“是一种崭新的,前所未闻的事物,它要求从根本上修改我们自从牛顿和莱布尼兹在一切因果关系的连续性基础上,创立了微积分以来的全部物理学概念”。在这篇演讲中,谨慎的普朗克在谈自己的工作时,没有明确使用“革命”术语。爱因斯坦充分认识到普朗克在开创全新的物理学过程中的地位和贡献。1918年,爱因斯坦推荐普朗克作为诺贝尔奖候选人,以表彰他“奠定了量子论的基础,丰富了全部物理学,这在近年来表现得尤为明显”(佩斯1982,371)。   M.玻恩在皇家学院为普朗克写的悼词中,描述了1900至1905年整个知识界的疾风暴雨之势。玻恩“毫不怀疑”普朗克有关“作用量子的发现”,是“堪与伽利略和牛顿,法拉第和麦克斯韦开创的科学革命相媲美”的一件大事。他在早些时候曾写道,“量子理论可以追溯到1900)年,那一年,普朗克宣布了他的能量子或量子这一革命性概念”(196,l)。他宣称,这件大事“对科学的发展是决定性的”,因此,“它通常被视为经典物理学和现代或量子物理学的分水岭”。但玻恩(1948,169;171)提醒我们说,不要轻率地接受所谓“普遍承认”的观点,即“普朗克做出伟大发现的1900年,标志着物理学新纪元的真正到来”,因为“在新世纪的最初几年,几乎什么事情也没有发生过”。玻恩又说,“当时正是我作学生的时候,我记得在课堂上很少提及普朗克的观点。即使偶尔提到了,也是作为一个理所当然应当被抛弃的‘昙花一现的假说’。”玻恩特别强调爱因斯坦的两篇论文(分别写于1905和1907)的重要性。可是,尽管玻恩宣称1900年后“普朗克已转入别的研究领域”,但他“绝没有忘掉他的量子”。1906年普朗克所写的一篇关于热辐射的论文表现了这一点,这篇论文“巧妙地展示了导致量子假说的一个步骤,给人以极深刻的印象”(玻恩1948,171)。   爱因斯坦在开创相对论革命的年代里,还对量子论做出了根本性的贡献,这充分说明了爱因斯坦的伟大之处。在1904年一篇关于统计物理学的论文中,爱因斯坦首次提到量子论。1906年,他再次以统计力学为主题进行了研究,建立了今天所谓的“固态量子论”。更为重要的是,正是他在1905年3月撰写的论文标志从普朗克潜在的革命思想到真正的科学革命的转变,尽管还只是处在理论革命阶段。1905年论文包含两个根本性的假设:一个是,当光或“纯”辐射在空间传播过程中,它被构想成由分立的和单个的粒子或小球(量子)组成;另一个是,物质在辐射或吸收光(或任何形式的电磁辐射)的过程中,也是以同样的量子形式进行的。这些假说不仅同普朗克1900年的假说相去甚远,构成一场彻底的转变,而且也与当时普遍接受的物理学理论有着根本性的冲突。佩斯(同上)认为,这项工作已成为“爱因斯坦对物理学最具革命性的贡献”;它“推翻了关于光和物质相互作用的全部现存观念”。我们已经看到,爱因斯坦本人特别把他的这项发现描述成“革命的”。   爱因斯坦1905年3月的论文题为“关于光的产生和转化的一个启发性观点”。“heuristic”一词在物理学中很少使用,它主要是在哲学和教育学中使用,意思是某种假定(或说法)对发现和解释有一定的帮助,但不必把它当真。按理说,爱因斯坦应该在1907年那篇相对论的论文和《狭义和广义相对论浅说》(1917,英译本1920)中再次使用这个词汇,但他没有这样做。他之所以在论述光学的论文中引进这个词,原因是他提出了一个可能并不存在的粒子性概念解释光的大部分已知现象。光的波动学说是19世纪物理学取得的最伟大的成就之一,并且被光的干涉实验所证实。克莱因援引别人的话说,爱因斯坦(克莱因1975,118)显然是在提议“物理学家们放弃光的电磁波理论”,而这是“麦克斯韦的电磁场理论和全部19世纪物理学取得的最伟大的胜利”,除此之外,爱因斯坦的假说没有任何实际意义。因此,爱因斯坦提出的只是临时性的假说。   描述一种波动所用的基本参量是速度、波长和频率。在爱因斯坦粒子假说的能量子hv概念中,频率v 常常通过波动方程导出,而其中波长参数则运用“干涉”技术测定。但在光量子概念中,对于波动理论极其重要的参量波长对于粒子或光量子却没有明显的物理意义。连续的或波动的特性与分立的或粒子的特性之间的对立是如此明显,以至于爱因斯坦不得不在他的论文中写上这样的话:“假设我们的见解是符合实际的”。普朗克始终认为,光和其它形式电磁辐射是由波动构成的,因而是无限可分的:分立的能量元或量子只是连续波与物质化互作用产生的一种效应,例如在光的吸收扣辐射过程中所表现出的,但却不是光波的基本特征。其他物理学家也长期持这种看法。按照爱因斯坦1905年的假设,光本身正是由分立元或量子构成的,也就是说,光(和任何形式的电磁辐射)必定具有一种“细胞”状的结构。在爱因斯坦的概念中,量子是光本身的基个特征,而不是以在光和物质相互作用过程中才表现出来。尽管科学家和科学史家今大一般都称“爱因斯坦的光量子理论”。但光子的概念是很晚才建立的,而且它另外还有动量的性质。而且,爱因斯坦直到临终以前(如在去世前一周的一次采访中)仍然坚持说,它“不是一个理论”,因为它不能为光学现象提供个圆满的解释。   尽管爱因斯坦的论文是假说性的,启发性的,不完整的和理论上的,但其中确实有一节是极为重要的、确定的,可以通过直接实验加以验证。这部分是爱因斯坦对光电效应的讨论光电效应现象是赫兹于1887年发现的.它的许多特性是P.勒纳德于1902年观察到的。在光电效应现象中,入射光照在金属表面上会引发电子辐射。实验表明、入射光必须超过某个频率以后,才能打出电子;实验还表明,不同金属的“临界”频率是不同的。爱因斯坦指出,假设光是由分立的量子构成,那么“最简单的设想是”,一个“光量子把它的全部能量给予了单个电子”。如果光(或辐射〕是单色的,频多为v ,则每个光量子的能量为hv。这个能量要做两件事:克服金属对电子的束缚力而作“功”(P);给辐射电子一定的功能(E);电子离开金属表面时拥有的能量用公式表示就是:   E+P=hv   或   E=hv-P.   爱因斯坦公式解释了光电效应的一些规律。一个规律是,辐射电子的动能E与光的亮度或强度无关,而只取决于它的频率。(爱因斯坦的解释是,光强是光子数目的量度,表明辐射电子的数目,而非能量)。公式还揭示了辐射电子的能量E与入射光频率v 之间的定量关系。另一个规律是,每一种金属在光电辐射过程中,都有一个确定的最小频率。爱因斯坦公式对此的解释是:光电效应只有当频率足够大,使得hv 大于P时才会发生。   爱因斯坦的公式还预言:E直接根据v 的变化而变化;如果根据实验给出动能与频率的关系图,那么直线的斜率就是普朗克常数h。不久后,J、J.汤姆森的学生A.L.休斯以及其他一些人各自进行了验证性实验,结果证明了爱因斯坦公式的正确性。但真正的判决性的实验是R.A.密立根做出的;这些实验不仅确证了爱因斯坦公式,而且得到了一个新的,很精确的普朗克常数h(见惠顿1983)。   密立根关于这些实验的论文(1916)是相当奇特的。尽管他承认“在每一个场合”,爱因斯坦的“光电效应公式”均能够“精确地预言实验的观测结果”,但他又称,爱因斯坦赖以推导出这个公式的“半微粒理论,目前似乎完全站不住脚”。他在当年又一次重复了他的立场,指出爱因斯坦的“电磁光细胞假说”是“大胆的”,实际上“也是粗糙的”。在《论电子》(1917)一书中,密立根写道,爱因斯坦公式是“一个和支持他的假说一样大胆的预言”,但爱因斯坦这个激进的预言完全没有“逻辑基础”。密立根说,结果发现“爱因斯坦的这个公式”竟然能够‘精确地预言”密立根和其他人“通过实验获得的事实”,这是多么令人惊奇!在他的书里,严然是一个革命的敌人的密立根,并没有实事求是地告诉他的读者,他本人进行这些实验的目的是推翻爱因斯坦公式,也包括公式赖以建立的光量子假说。1949年,密立根承认在他的一生中曾花了十年时间“检验爱因斯坦1905年的公式”。他写道,“结果和我所有的预期相反,在1915年我不得不宣布它无异议地被实验证实,尽管它似乎不合常理。”   密立根(1948,344)清楚地表达了他反对爱因斯坦光量子概念的理由:它们“似乎完全违背了我们关于光的干涉现象的全部知识”,以及波动理论的实验基础。1911年;爱因斯坦本人感到,他必须公开“声明光量子概念的权宜性特征”,因为它“似乎无法与已经得到完全证实的波动理论协调一致”。佩斯发现,爱因斯坦的谨慎“几乎被误解为他的犹豫不决”,这一事实可以解释许多令人不解的现象。例如,爱因斯坦的拥护者冯·劳厄1907年在写给爱因斯坦的信中说,他听说爱因斯坦“放弃了他的光量子假说”后很高兴。冯·劳厄并非唯一产生误解的人。1912年索末菲说,爱因斯坦不再坚持“他(1905)提出的大胆的观点了”。而密立根在1913年宣称,“我相信”爱因斯坦“大约在两年前,…已放弃了”他的光量子概念。1916年,密立根又一次宣称,尽管实验证实了爱因斯坦公式,但它所依据的“物理学理论”被证明是“完全站不住脚的,因此我相信,爱因斯坦本人也不再坚持它了”。但深入研究过爱因斯坦论文和信件的佩斯指出,“没有任何证据表明他在某个时候放弃过他的1905年所做的任何宣言”。R.斯图威尔(1975,75-77)于1975年以令人信服的证据宣布,爱因斯坦从未对他的光量子假说有过任何动摇,事实上,他本人对此“越来越深信不疑”。   直至1918年,卢瑟福(见佩斯1982,386)还说,“能量与频率之间的这种明显联系,物理学至今还不能做出解释。”佩斯在研究这段插曲时指出,“甚至在光电效应预言被证实和接受之后,除了爱因斯坦本人外,几乎没有任何人在光量子方面做过任何工作”。作为证据,佩斯引证了1922年爱因斯坦获诺贝尔奖金时的贺词。爱因斯坦不是因为他的相对论,也不是他的光量子理论,而是“因对理论物理学所做的贡献,特别是因发现了光电效应定律而获奖。”因此,我们只能得出这样的结论,爱因斯坦的革命性贡献当时只是停留在理论革命阶段,并未得到实际上的支持。   密立根企图否定爱因斯坦新观念这件事,不能简单地以此认为当时的物理学界普遍存在着反对爱因斯坦开创性观点的潮流。对爱因斯坦理论观点的一般态度是不予理睬,而不是积极论战。作为一个真正伟大的科学家,密立根确实是一个例外。1913年,一份推荐爱因斯坦当选普鲁士科学院院土的正式文件,反映了当时物理学界的一般态度。在这份文件上签名的是四位伟大的科学家和爱因斯坦的支持者,他们是M.普朗克,W.能斯特,H.鲁本斯,和E.华伯。这份发表于1962年文件(见佩斯1982,382)高度评价了爱因斯坦的杰出贡献,它甚至宣称:“在大大丰富现代物理学的每一个重大研究领域中,爱因斯坦几乎对每一个重大问题都做出了杰出贡献。”然后,他们感到应该原谅爱因斯坦“有时……也会在他的思索中失去目标”,例如“他的光量子假说”,在谈到原谅这一过失时,他们补充说:“即使在最精密的科学中,没有一点冒险精神,也是不可能引进全新的思想的。”即使荷马也有弄错的时候。   量子论和光谱:玻尔原子模型   前面谈到的并非量子论发展的唯一线索。1912年,在曼彻斯特卢瑟福实验室工作的一位年轻的丹麦人提出了一个全新的、革命性的原子模型。N.玻尔最初接触的是卢瑟福的原子模型,它如同一个高度缩小的太阳系,中央原子核周围是“轨道行星”一样的电子。玻尔模型的革命性在于,新的“原子模型”能够解释一定频率的光的辐射和吸收。他采用了普朗克的辐射理论,即能量“明显可分的辐射”是存在的。然后他指出,“普朗克关于原子系统行为的理论之普遍适用性,是爱因斯坦最早指出的,“并得到了其他物理学家的发展。众所周知的事实是,玻尔假设:处在稳定轨道上的电子既不发生辐射也不吸收能量,但当它从一个稳定轨道“跃迁”到另一能量较低的轨道时,原子就会辐射出一个光量子;反之,当电子吸收一个光量于时,它将“跃迁到能量较高的轨道上。玻尔指出,以此为基础,他能够推导出几个已知的光谱学定律。这就是著名的、革命性的“古典”量子论的起源。   很难判断被尔当初是如何看待自己理论的革命性的。从1913年到1924年,他肯定在尝试尽可能使他的理论包容更多的经典概念,以使其以“符合伟大传统”的形态出现。然而,玻尔在谈到他最初的理论时,只是称其为原子“模型”,这使人想起了爱因斯坦在1905年他的光量子论文中使用的特定的用语“启发性”。到了20年代初,几乎没有任何人怀疑玻尔理论的革命性,绝大多数哲学家都意识到了这一点。玻尔理论后来的发展包括,从单电子原子(氢)扩展为双电子原子(氦);引进椭圆轨道的概念。许多物理学家对这一伟大理论的发展做出了贡献,除玻尔外,另一位重要的人物是A.索未菲。同所有革命性的科学思想一样,玻尔的量子论也没有立即得到科学界的普遍接受,尽管他与实验发现的规律在数值上符合得更好。或许这种推迟的原因并非由于玻尔原子模型和光谱量子论本质的革命性,而是由于第一次世界大战的影响。大战后,几乎每一个著名的科学家都对量于论发展的重要结果产生了浓厚的兴趣。   玻尔理论本质上是与爱因斯坦的理论联系在一起的,因为二者都假定电子与光子相互作用的方式是一对一的。在表述光电效应时,爱因斯坦考虑了光子具有足够的能量引起吸能电子辐射并脱离物质表面的情况,而这种情况在玻尔理论中是一种极端条件间离子化);当光子能量较小时,电子不会脱离原子,仅仅“跃迁”到更高的轨道。玻尔理论中令人难以置信的困难是所谓分立态与定态概念,也就是轨道的概念。而且,正如爱因斯坦一样,玻尔也提出了一个直接同麦克斯韦物理学基本原理相矛盾的假设。麦克斯韦认为,在电场(原子核周围的正电场)中运动的带电体(电子)必然发生辐射。按照所有已被接受的物理学原理,一个轨道电子必然会因为辐射的缘故不断地减少它的能量,那么它的运动轨道也就会不断地降低直至最终落入原子核内。但玻尔假定,一个电子能够在稳定的轨道上绕原子核旋转,而不会释放能量而发生辐射,这就是影响这一理论被接受的主要障碍。M.V.劳厄就是反对者之一,他怀疑玻尔理论的主要理由是其直接违反麦克斯韦物理学。   那些在3O年代开始学习物理学的人如我本人,一定会回忆起当时的情景。那时,量子论课程(以及许多教科书)的特点之一就是先进行一番历史回顾,然后才开始正题。在历史回顾中,学生们可以一步步地了解到古典辐射理论(包括能量均分原理)的失败以及(普朗克和爱因斯坦开创的)量子论发展的各个阶段。然后,讨论光谱学原理和玻尔理论对这些原理的阐释,接着是索末菲将玻尔理论中的圆轨道发展成椭圆轨道。这一阶段往往特别强调密立根,弗兰克和赫兹的实验的历史意义。最后,学生们会逐步学到电子的自旋,量子数的概念以及伟大的泡利不相容原理。现在看来,之所以对量子论被接受的原因进行历史考察,是因为授课的教授们和教科书的作者们感到有必要让学生们了解前辈科学家们的经历,他们是如何转变的,是如何被迫接受一个全新的观念与尚不完善的物理学基础的。这就是量子论革命性质的一个标志。   深入研究玻尔1913年至1923年发表的著述可以发现,尽管他运用了普朗克常数并涉及爱因斯坦的光电效应理论,但他并没有明确宣布赞同光量子理论。这就是说,他的工作主要是研究电子轨道(也就是能级)发生变化时光的吸收和辐射问题,而不涉及光的本性和光的传播。在其原始论文(1913)中,玻尔承认了他引进了一个“与经典电动力学原理不相容的量,即普朗克常数”(见霍尔顿和库恩1969;米勒1984)。现在看来,玻尔理论似乎是经典力学用于确定稳定态的量子化概念以及不连续假设的奇异结合。玻尔(1963,8)显然明白,他的“原子模型”尚不完善,是不完整的初级形式,因为它的“基本思想与经典电动力学理论那些久经考验的,备受赞美的原理相冲突”。正如M.克莱因所发现的,1910年至1913年间,像M.普朗克和H.A.洛伦兹这样的科学家对爱因斯坦的光量子理论提出的最尖锐的批评也只限于“光量子说完全不能解释光的干涉和衍射现象”(1970)。玻尔本人在1913年的一次演说中说,原子释放的是纯辐射而不是光量子。从1913年到大约1920年,玻尔一直尝试着把经典的光的波动理论与原子辐射理论协调起来,最终建立了他所谓的“对应原理”。但A.索未菲1922年在他的颇有影响的论文《原子结构和光谱线》中,对应原理唯一使他惊奇的是,“保留了那么多的波动理论,甚至在绝对是量子特性的光谱过程中也是如此”(p.254)。索未菲最后说,“现代物理学目前正面临着不可调和的矛盾。”(p.56)玻尔本人甚至提议抛弃他所说的“所谓的光量子假说”。对这个激动人心的年代进行探讨不仅看到在企图建立一个与原子模型有关的,令人满意的光谱学量子论过程中产生了多么大的混乱,而且还表明将革命的新观念同经典物理学结合起来是多么困难。索末菲(1922,254)指出,现代物理学必须勇敢地承认新与旧之间的矛盾,应当“坦率地承认它们的非相容性”,W.泡利对这个观点极为赞同。   玻尔理论符合科学革命的全部检验标准。例如,1929年卢瑟福在一封发表于《自然科学》杂志的信中宣称,“玻尔教授大胆地运用量子论解释光谱的产生”,构成了一场革命,他说玻尔的理论是“普朗克假说的直接发展,对物理学具有深刻的革命意义”,1969年,J.考克罗夫特爵士指出,玻尔把“经典力学和量子论结合起来描述电子轨道的运动”是一次伟大的发展,它“促使原子理论革命化”。同笛卡尔革命一样,玻尔革命并没有持续多久。正如当年笛卡尔的工作后来得到了扬弃和发展,玻尔理论的某些基本内容合并到另一场革命,量子力学革命中去。在量子革命过程中,玻尔革命可以被视为第一阶段。   通向量子力学:伟大的量子革命   1926年,爱因斯坦的光量子概念获得了“光子”的称谓。光子一词是美国物理化学家G.N.刘易斯建立的,但他用来描述与光电子略有不同的概念。尽管刘易斯原来的概念早已被抛弃了,但光子却迅速成为物理学中的一个标准词汇(见斯图威尔1975,325)。可是,20年代中期的光子概念与爱因斯坦原来的光量子不同,它还包括某种特殊的性质,其中最重要的就是动量,这一点爱因斯坦最初并未考虑,但他确实在1916年引进了动量(P=hv/c)特性;这个概念甚至早在1909年就已出现在J.斯塔克的一篇论文中(见佩斯1982,409)。光子可能具有动量的思想是P.德拜和A.H.康普顿于1923年提出的。事实上,康普顿还做出了现代物理学的一项最轰动的发现,即今天以他的名字命名的康普顿效应。康普顿依据无可辩驳的实验事实证明:“辐射量子带有方向性的动量和能量”(斯图威尔leqs,232)。L.斯图威尔回顾了这项工作的历史,他指出康普顿的动机与十年前的密立根不同,不是检验爱因斯坦的预言。斯图威尔还发现,A.索未菲在lop年10月9日写给康普顿的贺信中,首次使用了“康普顿效应”这一术语。索未菲还透露,康普顿的结果是头一年夏天他与爱因斯坦“讨论的主要问题”。   尽管康普顿的结果最初也引起了一些争论,但人们(如海森伯)很快就认识到,康普顿效应不仅是辐射量子论的转折点,而且是全部物理学的转折点。康普顿很早就意识到自己工作的革命性。1923年,康普顿在美国科学促进协会所作的演讲(这篇演讲于1924年发表于《富兰克林研究所杂志》上)中坦称,他的发现“使我们关于电磁波传播过程的概念,发生了革命性的变化。”然而,当他在《国家科学院院刊》(9:350-362)上发表的另一篇文章中却说:“目前的衍射量子概念绝没有冲击”经典波动理论。爱因斯坦终于看到了自己的观念得到了证实,他宣布,现在有两种不同的光本性理论:波动性和粒子性,“二者都是不可缺少的,而且人们必须承认,它们没有任何逻辑联系,尽管二十年来,理论物理学家作了巨大的努力(试图找到某种联系)。”   大约在同一时期,L.德布罗意在康普顿成就的鼓舞和启发下,提出了物质波的概念。在1923年发表的论文中,他引用了“康普顿的最新结果”,以及光电效应和玻尔理论作为他确信波粒二象性的理由,他宣布,爱因斯坦的光量子概念是“绝对普适的”。爱因斯坦,玻尔以及康普顿的工作启发他接受了“光量子的客观实在性”。   德布罗意没有从物理意义上阐述光的波粒二象性,但他坚信这种二象性是自然界的普遍特性,即使普通物质(如电子)也是同时具有粒子性和波动性,这一革命性的概念是德布罗意在他的博士论文中(1924年11月25日提交)首次建立的,而后,爱因斯坦对它作了进一步的发展。值得指出的是,正是爱因斯坦的工作引起了薛定谔对物质波的重视(见惠顿1983)。美国科学家戴维逊和革末以及英国的G.P.汤姆森(J.J.汤姆森之子)所作的实验证实了德布罗意的假说。而更为重要的是,它是新量子力学的前奏,而量子力学是与薛定谔和海森伯的名字联系在一起的(见克莱因1964;雅莫尔1966;拉曼和福曼1969;斯图威尔1975,以及米勒1984)。这一新的科学革命(特别是在M.玻恩引进了几率波的概念之后)的伟大意义在于,量子力学在20世纪后半叶成为物理学和自然科学的核心内容。   科学史上有这样一个众所周知的事实,从20年代开始,爱因斯坦拒绝接受量子力学,认为它不过是对自然界的“权宜”性说明,从而使得爱因斯坦与整个物理学界产生了分歧。爱因斯坦反对的主要观点是,新物理学引进几率思想作为它的基础缺乏经典的因果性和确定性,以及由此导致的描述自然界的不完备性(这似乎是完全对他本人而言)。尽管如此,爱因斯坦认识到量子力学是物理学发展的一大进步,虽然它是一个权宜性的假说。他向诺贝尔评奖委员会推荐量子力学的共同创建者薛定谔和海森伯为候选人(见佩斯1982,515)。耐人寻味的是,爱因斯坦本人曾对量子力学的统计学基础做出了重要贡献。   量子力学革命,或第二次量子革命的历史,以及它从潜在的革命性到理论革命到科学革命阶段的迅速转变,很自然成了本书一章的研究主题。量子力学对物理学发展的革命意义在过去的半个世纪中表现得已经很明显。这些发展对科学和思维方式的重要性,近几十年几乎任何一本科学哲学著作都对它作了深入阐述(见玻恩1949;戴维斯1980;费困曼1965;雅莫尔1974和苏帕尔1977)。   古典量子论的最后堡垒   在本章结束之前,我们介绍一个严肃的插曲,它能够说明爱因斯坦光量子概念的真正革命性质。1924年,也就是康普顿宣布康普顿效应的发现一年之后,玻尔(同H.A.克拉摩和J.C.斯拉特一道)发表了一篇论文,旨在反对光子概念。玻尔在他的原子理论中采用了量子概念,而这一原子理论很快得到了普遍接受并使物理学的这一学科发生了革命性的变化。当时,量子论中还存在着许多无法解释的困难问题,直到几年后建立了量子力学,这些问题才得到解决。但玻尔理论同普朗克最初的量子论一样,本身并没有涉及到“自由辐射场”,也就是光或其它电子辐射在空间的量子化问题。爱因斯坦1905年的论文发表后的二十年间,玻尔和许多物理学家一样,他们虽然接受了量子论,但只承认光在辐射和吸收时的量子化,而不是光本身的量子化。他们必须记住,大量实验(包括干涉实验和衍射实验)以似乎无懈可击的证据证明了光的连续波动传播。   玻尔-克拉摩-斯拉特假说是玻尔最后一次坚持他反对用量子论对光作一般性描述的立场。他坚信,他自己的“对应原理”能在辐射和吸收量子论和已经广为认可的电磁波传播理论之间的鸿沟上架起一座桥梁。在1919年及其以后的几年中,他甚至表达过这样的愿望:如果对维护“我们的经典辐射理论”有必要的话,他将不惜迈出最为极端的一步——放弃能量守恒原理(见斯图威尔1975,222)。   1922年12月11日,他在诺贝尔奖颁奖仪式上作演讲时,再次提到了这个问题。当时他解释说:“近年来,爱因斯坦理论的预言已经得到了……精确的实验证实。”但他又立刻补充说:“尽管具有启发性意义”,但爱因斯坦的“光量子假说”与所谓的干涉现象“完全不能相容”,因此,不可能在辐射本质意义上解释光。“这成了1924年的玻尔-克拉摩-斯拉特论文的主题,论文的主要目的是:探索辐射特性的原因,“但并不涉及任何与光在自由空间传播定律相背离的光的电磁波理论”,而只研究“虚辐射场与发光原子相互作用这一特例”。这篇论文中,作者声明:在单次原子相互作用过程中,他们将“抛弃…能量与动量守恒原理的一个直接运用”,他们认为,守恒原理仅在宏观统计水平上是有效的,对单个原子并不适用。在此前两年,索未菲曾说过:抛弃能量守恒原理可能是医治光的波粒二象性疾病“最好的药方”(佩斯1982,419)。几年后,海森伯(1929)在评述这段历史时指出,“玻尔-克拉摩-斯拉特理论代表了古典量子论危机的顶点”(佩斯1982,419);按照佩斯的说法,它是“古典量子论的最后一座堡垒”。   斯拉特后来在致B.L.F.D.瓦尔登的信中说,“能量和动量统计守恒的思想”是由“玻尔和克拉磨上升为理论的,这和我更好的见解完全相反”(斯图威尔1975,292)。斯拉特指出,玻尔和克拉摩有充分的理由说明“在当时的条件下,没有任何现象需要假定空间中光微粒(或量子)的存在。”斯拉特“对抛弃量子论获得的益处同放弃能量守恒和因果律造成的损失作了比较,终于被所获得力学机制的简单性所征服”。   否定这一理论的意见“非常之多”(斯图威尔&7)。然而,真正的答案并没有在理论讨论中出现,而是来自于直接的实验。关于实验结果,我们不妨引用赫胥黎曾经说过的话:“一个漂亮的假说被一个丑陋的事实扼杀了。”实验毋庸置疑地证明,能量和动量守恒定律即使在单一原子层次上也是有效的。这一判决性实验采用的正是康普顿效应技术。第一批实验结果是柏林的W.玻特和H.盖革获得的,而后,A.H.康普顿和A.W.西蒙得到了更为精确的结果。1925年4月21日,玻尔一听到这个消息,立即写到:“目前最迫切的事情是,给我们革命性的努力以尽可能体面的葬礼”(见斯图威尔1975,301;佩斯1982,421)。同年7月,他在《物理学杂志》上发表文章,两次提到了革命。他写到,“我们必须为这样的事实作好准备:经典电动力学理论所需要的推广,要求对那些迄今为止一直描述自然的概念进行革命性的变革”。这段插曲和玻尔对他的议论,也许正显示了量子论的巨大威力,它是那样伟大以致于使人们不自觉地使用革命的语言。 爱因斯坦论科学革命 科恩著    对于许多历史学家,哲学家,社会学家和科学家来说,相对论革命已成为科学革命的典范。但爱因斯坦却认为他的贡献应被视为物理学进步的组成部分,而不是物理学革命性的发展。他从未写过专门的文章论述与进化观相对应的革命观这一主题,但他却在许多场合下对此作过深刻的表述。   在评价爱因斯坦关于科学革命的观点时,我们必须注意,在他获得国际声望之前,他的观点与其后来的观点是不同的。这也许能解释这样一个事实,他在1905年3月写给C.哈比希特的一封信中,把自己的光量子概念说成是“非常革命的”(希里格1954,89)。但在1947年,他却强烈反对科学发展是由一股稳定的革命潮流所推动的观点。就我所知,这封致哈比希特的信,是爱因斯坦唯—一次使用“革命的”这一词汇来描述他自己的工作和本世纪物理学。其它关于爱因斯坦对科学革命的论述,或散见于他的通信中,或流露在他的演讲中,或体现在他所写的有关自己的工作或其他科学家成就的文章里。因此他的每一个见解必须放在特定的背景下去考察和理解。我发现没有证据表明爱因斯坦对科学革命的模式有过什么重要的思想或曾建立有关科学发展途径的真正理论。我在这里还要补充一点语言上的问题:爱因斯坦的母语是德语,因此,在理解和翻译上也会出现问题。   在爱因斯坦发表了他的“非常革命的”光子概念,相对论以及对布朗运动的深入研究成果一年之后,他明确地谈到他的忧虑,他担心也许他再也不会得到做出上述成就时所具有的创造力。难道伟大的创造力真的穷尽了吗?lgu年5月3日他写信给M.索洛文,表达了他担心不再会做出新的重要的科学贡献的忧伤心情。他说:“我将要步入停滞不前和思想贫乏的年龄段了,面对年轻人的革命热情,这个年龄段的人只能悲叹而已”(爱因斯坦1956,5;见费纳1971,297;1974)。这句话说得多少有点模糊,但我想其含义之一就是,一个富有创造力的青年科学家容易产生“革命性思想”,因此他们很可能形成“非常革命性的”观念。我认为不能把1905-1906年的两封信中发现的“革命的”这个词汇看作与当时科学界流行的革命一词的含义有何不同。这就是说,爱因斯坦特别强调光量子概念体现了很强的不连续特性,是物理学进程中的革命性突破。   爱因斯坦于1905至1906年对革命性科学的召唤与他1947年的评论形成了鲜明的对照。1947年1月30日《纽约时报》刊登了这样一条新闻:“爱因斯坦的理论得到拓展”。这是指A.薛定谔的声明:“解决了一个30年悬而未决的老问题:爱因斯坦1915年的伟大理论得到有力的推广。”《纽约时报》报道说,薛定谔宣称他已将广义相对论从引力范围扩展到电磁领域。这项研究是“我们科学家应当做的事,而制造原子弹却相反。”薛定谔的声明被人们视为是不够谦虚的。在此之前,《纽约时报》派人采访了爱因斯坦,要他发表看法。采访报道同有关薛定谔的新闻登在一起。它只引用了爱因斯坦的几句话,他“目前还不能对此做出任何评价”,爱因斯坦说:“我缺乏第一手材料”,而且“有关科学上的事情”,他与薛定谔只有“有限的联系”。   但是,尽管爱因斯坦没有在新闻媒介上做出公开评论,他却写了一篇文章,其英译本M.克莱因曾引用过(1975,113)。爱因斯坦说:“读者得到的印象是每过五分钟就会发生一次科学革命,简直就像某些不稳定的小国家发生军事政变一样。”爱因斯坦认为(根据克莱因的引证):“过多使用科学革命这个术语会使人对科学发展过程产生错误的印象”。爱因斯坦写道:这个“发展过程是前后连续几代最优秀的头脑加上不知疲倦的劳动”,是“逐渐导致对自然规律的更深刻的认识过程”。在这些文字中,我们可以发现,尽管爱因斯坦强调科学进步的积累的一面,但他没有完全排除偶然发生的革命。   克莱因发现:“只有当(科学上的)变革达到法国或俄国革命那种程度时,爱因斯坦才特别地提到了科学革命”。我们已经看到爱因斯坦一再提到麦克斯韦革命(或法拉第,麦克斯韦,赫兹革命)。在他的“自传注释”(1949,37)中,爱因斯坦指出:“从引进(电磁)场而开始的革命绝没有完结。”克莱因(1975,118-119)对爱因斯坦的成就进行深入的分析后指出,爱因斯坦并没有真正创立新的“光量子理论”,而仅仅是提出一个假说,它是“建立必要的新理论的一个富有启发性的向导”。克莱因还指出,在爱因斯坦提出相对论时,他没有宣称他“发现了新的基本理论”。因此在他1907年的论文中(1915年的文章中也是如此),爱因斯坦正确地指出狭义相对论不过是“一个富有启发性的原理”。对爱因斯坦说来,相对论不能构成一场革命。   尽管爱因斯坦在他1905年做出的三个伟大贡献中,只把其中的一个冠以“革命性的”这样的定语,但他的科学界的同仁、学生、合作者和传记作者都赞成科学史家的观点:狭义相对论、光量子论、对布朗运动的解释这三者都具有革命性质。其中他对布朗运动的解释最不为人们所知,但它的革命性质是与生俱来的,因为它为解决分子运动这一基本问题提供了一个全新的方式。在研究分子运动时,爱因斯坦建立了“已给出的统计涨落理论中第一个重要的方法”(克莱因1975,116)。由波兰物理学家M.V.斯莫尔乌克尔斯基同时独立提出了这一理论,被许多同代人看作是革命性的,特别是当它被J.佩兰、斯维德伯格和其他人的实验证实以后。但爱因斯坦并不认为这一工作是革命性的,因为“它不过是摆脱机械论世界观所得出的一个必然结果”(同上)。   爱因斯坦1905年论光的量子性的论文的革命意义已经在本书第27章中讨论过了。但这里我们应当注意爱因斯坦在标题中用了“启发性的”一词。他所阐述的尚不是一个理论,而是以一个假说为基础解释各种各样的现象,而假说的正误在他那里是无关紧要的,它只是作为解释的基础。爱因斯坦直到去世时仍然没有将“理论”一词向光量子假说联系在一起,在他去世前一周,爱因斯坦纠正一位“爱因斯坦的光量子理论”的来访者,爱因斯坦强调说:不,光量子“不是一个理论”,因为光量子和相对论不同,爱因斯坦认为相对论是以前物理学逻辑的进化式的发展,而光量子假说同以前的原理不能相容。他认为他得出的光的概念是奇特的,甚至是完全站不住脚的。因此他采用“革命的”作为光量子假说的定语也许暗示了这种不合适的,甚至不正确的特性,而不只是它的新奇。   众所周知,爱因斯坦在他科学生涯的鼎盛时期,曾花费大量的时间致力于创立“统一场论”,但没有取得成功。统一场论试图以一种内在联系的方式将引力和其它物质力统一在一起,以期对物理世界进行准确完整的描述。M.克莱因认为爱因斯坦后来的关于科学革命的见解是他对正在到来的革命的信念的一部分,这场革命将恢复物理学中某些在20世纪的冲击下失去的性质。克莱因(1975,120)写道:“当爱因斯坦心存疑虑地反对声称这个或那个新发现的理论引起了物理学革命的时候,他指的是‘真正的革命’。牛顿世界观的旧体系已被抛弃,但他的天才后继者必须提出一个可理解的、一致的和统一的物理实在图景,以代替已被抛弃的旧图景。没有给出完整新图景的暂时的思想成果理应获得应有的评价,但爱因斯坦拒绝把它们称作是已经完成的革命”。   让我们回过头来看看爱因斯坦对伽利略的评价。他和开普勒和牛顿一道是爱因斯坦所崇拜的英雄人物。爱因斯坦不仅盛赞伽利略的科学成就,而且欣赏他工作所体现的主导思想:“竭力反对任何根据权威而产生的教条。”爱因斯坦称赞伽利略只承认“经验和周密的思考才是真理的标准”,他评论说,伽利略的这种态度在那个时代是“多么危险和多么革命”。这些话出自爱因斯坦为S.德雷克英译的伽利略的《对话》所写的序言,我们关于爱因斯坦和革命的讨论很快就会涉及这本书。   爱因斯坦的序言分别用德文和所谓的“S.巴格曼的权威英译本”的出版。尽管两种版本中都出现了同一个词汇——革命的,因德文版有一段话中采用了另一个完全不同的词汇:bahnbrechend(字面意思是“开创”),按照“权威译本”,这段话的意思是“对话的革命性的真正内容”。在序言中,爱因斯坦把伽利略比作政治革命者。按照爱因斯坦的观点,伽利略抛弃了古代学者的权威和偏见,而坚信自己的推理。因为在伽利略时代,几乎没有“具有坚定意志,并且兼具智慧和勇气的人”敢于挺身而出,反对“那一批无所事事的说教者,他们靠了人民的无知,披着牧师和学者的外衣”,借以“维护自己的权势”。爱因斯坦认为伽利略的地位是“开创性”和“革命的”。但他没有使用“伽利略革命”这样的词句。他懂得即使没有伽利略,在17世纪也能看到“腐朽的文化传统的枷锁”被打破,他的谨慎说明他担心自己也难免具有“一般人的弱点”,那就是“由于醉心于所崇拜的人物,而夸大了他们的地位”。   当时爱因斯坦已经熟练地掌握了英语,无论是写作还是讲演,但他还是宁愿用德语写作。我们不知道他在审阅那个“权威译本”时有多细心,但我相信如果不能表达他本人的思想的话,他绝不会放过用“revolutionary”代替“bahnbrechend”的译法。当时译者与爱因斯坦就在一起工作,难道是他歪曲了爱因斯坦的意思?无论如何,爱因斯坦就在几行前刚刚用了“革命的(revolutionary)”一词,从上下文的意思来看,其用意是毫不含糊的。四年前,爱因斯坦在他的“自传注释”(1949,53)中,在叙述曾朗克之后的时期也使用了同样的词:在普朗克的开创性工作之后(nach Plancks bahnbmehender Arbeit),但这一次和他提到伽利略不同,他没有将普朗克的工作说成是“革命的”。他讨论了“根本危机——这场危机的严重是由于普朗克深入研究了热辐射而突然被人们认识到的”(1900,37)。   爱因斯坦在他的“自传注释”(1949,32-35)中讨论了麦克斯韦理论的革命性,他用“伽利略-牛顿组合”对比“法拉第-麦克斯韦组合”,其中每一组合中的第一人都抓住了“定性的联系”,第二个人则都是把这种联系用精确的公式表达了出来,并且使它们可以定量地运用。我们相信,凡是对照读过“自传注释”和“对话”序言的人都不能不得出这样的结论:爱因斯坦承认有两次伟大的革命。第一次是以伽利略革命为先导的牛顿革命,在他们那里质量和加速度的概念同力的新观念联系了起来,这是一种超距作用力。第二次是在一定程度上基于法拉第电磁感应观念上的麦克斯韦革命,他们引进了场的概念来代替牛顿的“超距作用”——爱因斯坦非常确切地强调说“场同样也描述了辐射”(1949,35)。   1927年《自然科学》上发表了一篇爱因斯坦撰写的纪念牛顿的文章,他写道:“由法拉第和麦克斯韦发动了电磁学和光学革命……这一革命是牛顿革命以后理论物理学的第一次重大的根本性的进展”。从上下文可以看出,爱因斯坦在这里似乎也隐含着承认了牛顿革命。这里爱因斯坦没有像在其它文章中那样使用“revolution”一词,而是使用了“法拉第-麦克斯韦的电磁和光学革命(umwalzung)”。我们知道,umwalzung一般被视为revolution的同义语。   爱因斯坦在后来评述牛顿的文章(1927;1954,260)中表达了他自己的看法。他提出:“广义相对论是场论研究规划的最后一步”。然后他说:“从量上看来,他自己对牛顿的学说只作了很小的修改,但从质的方面说来,他的改进则是深刻的”。这是爱因斯坦对广义相对论进化的特性的经典论述。“修正了的牛顿理论”这句话表达了爱因斯坦的内心思想:他的工作只是一种改进(transformaion),而不是全新的创造。我们知道,认识到这是一场改进绝不会贬低我们对新的观念可能带来的革命性变化的估价。在这篇文章中,爱因斯坦说:“麦克斯韦和洛伦兹的理论不可避免地会导出狭义相对论,狭义相对论既然放弃了绝对同时性观念,也就排除了超距作用力的存在”。他希望读者认识到狭义相对论是进化的台阶,尽管我们也许看到了这样一种改进的意义是如此重大,因而不论其进化特性如何突出,它也能被看作是革命性的。在文章中,爱因斯坦深刻地如实地揭示了狭义相对论和广义相对论的意义。而对大多数历史观察家来说湘对论似乎不仅是革命的,而且是最高层次上的革命。   进化这一主题在爱因斯坦的许多文章里都作了阐述。他在伦敦《泰晤士报》(1919.11.28爱因斯坦,230)上的一篇通俗文章中写道:“狭义相对论”只是“麦克斯韦和洛伦兹电动力学的一个系统发展”。1921年在伦敦皇家学院所作的一次演讲中,爱因斯坦进一步发挥了这一思想,他说:“相对论……可以说是完成了麦克斯韦和洛伦兹建造的巨大的智慧大厦”,他试图把“场物理学推广到各种现象,包括引力在内”(同上,246)。然后他毫不含糊地声明:“这里我们并没有革命的行动,它只是一条可以追溯到几个世纪前的发展路线的自然延续”。下面我们即将考察爱因斯坦的这一声明是否是对新闻媒介的夸张所做出的反应。但我们应当注意到,进化的主题同样在他的其它演讲中以及后来的文章中出现,例如在评价牛顿的文章(p.261)中,爱因斯坦讨论了“我们关于自然过程的观念的进化”。然而,试图把爱因斯坦的见解纳入一个简单的模式所面临的困难是,事实上,即使在同一篇文章里,爱因斯坦所描述的科学发展的图景也是十分不同的:“我们的基本观念的革命自19世纪末已开始发生了”,德文原文是这样写的:“ein umschwungder grandanschauungen”,由巴格曼(爱因斯坦1954,257)翻译成英语是:“我们的基本观念发生的渐变”。可是我们或许能参考爱因斯坦论述麦克斯韦的文章,得到对这句话理解的一点启示(见前面第20章)。爱因斯坦这样写道“在任何时候,这场伟大的变革(或革命)都将和法拉第、麦克斯韦和赫兹的名字联系在一起”。但在紧接着的下一句话中,爱因斯坦用了“革命(revolution)”一词来描述这一事件,这使我们清楚地看到他把“变革(umschwung)”用作“革命”的同义语。爱因斯坦评价牛顿文章第一位翻译者将“umschwung”翻译成“revolution”(这是许多词典中这个词的第一个释义),但却改变了作者的语法关系,变成“我们基本观念中的逐步革命”。也许这为科学史的变化引入了一个新的概念,而事实上它在逻辑上是自相矛盾的。可是我们无论选择这个词的哪一个释义,毋庸置疑的是爱因斯坦确信科学中伟大的革命性变革能够发生且已经发生,但它们很少(如果有的话)是与过去的思想没有任何逻辑联系突发性的、戏剧性的和无法预期的变化。然而他本人从未在公开场合或私下说相对论是这样一场革命。   吉拉德·霍尔顿在1981年写过一篇评述爱因斯坦的文章,他讨论了爱因斯坦关于“科学理论是通过进化而发展的思想”(P.14)。他强调爱因斯坦的主张:“物理学理论最美妙的命运是能指出一条建立一个包容更广的理论的途径,而旧理论本身则是新理论的一种特例”。特别具有说服力的是爱因斯坦第一次来到美国时所作的演讲(《纽约时报》),1921.4.4见霍尔顿1981,15):   目前在公众中广泛地流传着一个错误的见解,认为相对论同牛顿、伽利略以来的物理学格格不入,同他们的推理完全对立。而实际情形与此相反,没有伟大的物理学前辈的发现,没有他们建立的前导理论,相对论简直是不可想像的,它没有赖以生存的基础,凭心而论,没有以往必须作的工作,相对论不可能适时出现。那些为建立相对论奠定基础的人有伽利略、牛顿、麦克斯韦和洛伦兹。   米歇尔.布宾在哥伦比亚大学介绍爱因斯坦时说,他是一种理论的创立者,而这种理论是“动力学的一次进化,而不是一场革命”。当时他对爱因斯坦的立场一定会心领神会的。   上述爱因斯坦的见解表明,用一句话来概括爱因斯坦是否相信科学中发生了革命是多么困难。他一定知道大多数人(不论是科学家还是非科学家)都认为相对论是一场革命,因此他不厌其烦地(在不少场合下)指出相对论迈出的是逻辑的、进化的一步,而不是与旧观念的直接决裂的一步。他不只一次说有麦克斯韦革命,而且在1953年他毫不含糊地介绍伽利略的《对话》时运用了“革命性”一词,语气显然比他半个世纪前称自己的光量子为“富有启发性的”加重了许多。   探讨爱因斯坦有关科学革命和科学进化的思想,我们不该忘记,爱因斯坦从未写过有关文章,也没有在有记录的谈话中,或在我们能收集到的信件中专门讨论这一主题。而且我们知道爱因斯坦在许多方面都是一位很谦虚的人,因此他会极力反对在报刊上宣传他发动了科学革命。在他的一次最为坦率的表态中,他突出反对的是新闻媒介给人造成了这样一种印象:科学革命“每五分钟”就会发生一次。但应当注意的是,即使在爱因斯坦尖锐反驳对薛定谔的成就过分渲染时,他也没有完全排除发生科学革命的可能性。天件谦和与对新闻机构作法的反感很可能是爱因斯坦把自己开创的革命看作为“进化”的主要原因。   此外,对年轻的富有理想的知识分子来说,在1905和1906年出现“革命”一词,同1917年后的意义完全不同。爱因斯坦把他的工作看作是进化的而不是革命性的主要论述,是在1917年俄国革命和第一次世界大战结束后很快遍及中欧的革命夭折后做出的,当时柏林的大街上还在进行着血腥的战斗。从20-50年代,正如我们所知,爱因斯坦乐于撰写论述伽利略(也许还有牛顿)革命的文章,他还多次写过评述麦克斯韦革命的文章。我认为,重要的是在爱因斯坦40年代写的自传中,占有突出鲜明地位的,是他对麦克斯韦革命的论述,那是一种强烈而明快的论述。当爱因斯坦谈到麦克斯韦革命是由法拉第、麦克斯韦和赫兹共同做出(还附加了麦克斯韦具有“狮子般的领袖地位”)的时候,毫无疑问他强调的是观念变革的深度,而没有顾及时间的跨度。因为法拉第的论文发表于19世纪3O年代,赫兹的论文发表于19世纪90年代,这场革命横跨半个多世纪的漫长时间。这个例子表明爱因斯坦思想中的伟大科学革命不能同突发性的、剧烈的政治事件进行严格的类比,政治变革是以统治形式的更替为特征的。   爱因斯坦先前的助手巴纳什·霍夫曼曾写过几部关于爱因斯坦和现代物理学的书。他告诉我他从未听到爱因斯坦说过任何反对发生科学革命的话。在霍夫曼同爱因斯坦长期的秘书和朋友合作写的一本书中,霍夫曼依据大量有关爱因斯坦革命的论述,发现爱因斯坦的科学观并不自相矛盾。霍夫曼把爱因斯坦曾用于伽利略和麦克斯韦的科学但没有用于他自己的科学的那些评语照搬于爱因斯坦的科学。英费尔德在他所写的论述爱因斯坦和相对论的书中,称狭义相对论是“第一次爱因斯坦革命”(1950,23;40),广义相对论是“第二次爱因斯坦革命”。英费尔德是爱因斯坦的亲密助手,并和爱因斯坦合作完成了《物理学的进化》(1938)一书。英费尔德评价爱因斯坦对量子理论的贡献是量子理论“这场未完成的伟大革命”的一个主要步骤,它是“革命的同时也是调和的”。记者亚历山大·莫斯柯夫斯基曾报道过大量同爱因斯坦谈话的内容,他说狭义相对论体现了“物理学思想的革命性转变”(1921,113),广义相对论要求“革命性的自然观念”(p.6),“我们中间很少有人意识到沿着爱因斯坦观念的发展线索,等待我们的是更深刻的内在革命(p.141),普朗克,这位在思想和言论上均比较保守的人在宣称爱因斯坦工作的极端革命性方面显然没有丝毫的犹豫(霍尔顿1981,14):   这种关于时间的新的思维方式极大地要求物理学家具有抽象和想像的能力。他远远超过在理论科学研究中甚至在知识论中取得的任何惊人的成就……,相对论引起的世界观的革命,就其影响的深度和广度来说,只有哥白尼引进的新的宇宙体系所导致的革命可与之相比。   但丹尼斯·西夏马(1969,ix)发现:“牛顿运动定律其自身的逻辑是不完整的,从中产生的问题一步步导致了极端复杂的广义相对论”。有许多科学家和历史学家认同爱因斯坦的观点,认为相对论是已有科学观念的扩展和改进,同样也有许多证据表明相对论是本世纪最伟大的革命之一,是一场主要的科学革命。   爱因斯坦在大量文章中以及自传中都认为,进化和革命均是科学发展的要素,现今已经成为两项重要的研究课题。吉拉德·霍尔顿(1981)集中研究爱因斯坦关于相对论进化性质的表述和他1947年声明反对薛定谔宣称的革命的立场。因此他只是提到了但并没有讨论爱因斯坦致哈比西特的有关量子理论的信,也没有考察爱因斯坦许多关于麦克斯韦革命的论述。另一方面,马丁·克莱因(互975)在了解到爱因斯坦关于相对论是科学进化过程中的一部分这一思想的同时,他也研究了爱因斯坦关于革命的论述——这类论述同麦克斯韦、薛定谔和爱因斯坦自己的光量子假说联系在一起。 爱因斯坦的科学成就 吴 忠 超   爱因斯坦是历史上继牛顿之后最伟大的科学家。他是狭义相对论的重要发现者,他对量子理论的创立具有重大的贡献,而广义相对论,亦即现代引力论的建立,则应全部归功于他。   十九世纪末期,麦克斯韦成功地把电学和磁学统一在他的电磁理论中,从他的方程推导出,电磁波在真空中传播的速度刚好是光速,于是他断定光波应是电磁波的一种。麦克斯韦因为家族遗传的疾病,只活了四十八岁,因此没有看到电磁波实验的成功。在牛顿的绝对空间、绝对时间以及伽利略的旧的相对性原理框架中,只有以无限速度运动的物体,在相对匀速运动的坐标系中才具有相同的速度,即无限速度。而牛顿的万有引力认为是以无限速度传递的,所以在麦克斯韦之前,牛顿物理学被认为是自洽的,而电磁波是以有限速度传播的,在旧的相对论框架中,它的速度会因坐标系的选取而改变,这样他的方程只能在一个特定的坐标系中成立,这个坐标系被认为是相对于一种称为以太的媒介静止。于是寻求以太的存在便成为科学的主题。迈克尔逊——莫雷实验的结果否认了以太的存在。爱因斯坦在1905年发表了一篇题为“运动物体的电动力学”的论文,指出如果将时间和空间组成四维的时空,而在参考系进行相对匀速运动时,时空坐标遵照所谓的洛伦兹线性变换,则一切物理定律包括麦克斯韦方程都应采取相同的形式。这样一来,以太的存在便完全是多余的。爱因斯坦在发表狭义相对论之前是否知悉迈克尔——莫雷的实验仍是科学史上的一个悬案。   这篇论文抛弃了牛顿的绝对时空观,导致物理学上的一场革命。由洛伦兹变换导出的尺缩、钟慢以及双生子佯谬都和人们的直觉相抵触。而著名的质能等效公式则是核能乃至核武器的理论根据。   1900年普朗克为了解决黑体辐射的紫外灾难问题,提出了辐射的量子理论,即是光辐射必须采取一种称作量子的波包形式。但是只有在爱因斯坦提出光子理论之后,人们才真正接受光可以粒子即光子的形式存在。普朗克曾经是爱因斯坦关于狭义相对论第一篇论文的审稿人。既然光波可以作为粒子而存在,那么电子等物质粒子能否以波动而存在呢?这是法国的一名研究生德·布罗依的设想,爱因斯坦得知后立即支持这一激进的假说。这些都是量子理论发现的前奏。爱因斯坦因他的光子理论而获得诺贝尔物理学奖。其实爱因斯坦对相对论的贡献远为重要,但是诺贝尔评奖委员会对激进的相对论持谨慎的态度。事实上迄今诺贝尔奖从未为理论相对论家颁发过。终其一生,爱因斯坦从未接受量子理论为终极理论,他认为量子力学只是一种唯象理论,而终极理论必须是决定性的。我们知道,就现状而言,量子力学并不自洽。它仍然在忍受着爱因斯坦——罗逊——帕多尔斯基佯谬的折磨。近年的一些研究似乎在一定程度上解脱了薛定谔猫佯谬对它的折磨。   狄拉克把狭义相对论和量子力学相结合,得到了极富成果的量子场论。量子场论是描述一切微观粒子的理论框架。从狄拉克方程可以推导出反粒子的概念。量子电动力学可能描述电子、光子、正电子的湮灭、创生和相互转变。人们由此进而发展出当代粒子物理学。   爱因斯坦说过,如果他不发表狭义相对论,则在五年之内必有他人发表。其实当时洛伦兹和彭加莱已经非常接近这个结果了。可惜洛伦兹无法挣脱旧的时空观,而彭加莱又主要是一位杰出的数学家,因此只有眼光敏锐、思维深邃的爱因斯坦担任这项历史任务。值得提到的是,当时洛伦兹已是世界闻名的物理学家,彭加莱是法国首位数学家,而爱因斯坦大学毕业后,连中学教员的职务都找不到,借助朋友介绍才在伯尔尼专利局任一名职员。   他接着说,如果他不在1915年发表广义相对论,则人们至少得等待五十年。这个估计是非常合情理的。广义相对论是狭义相对论和引力论相结合的成果。它的一个实验基础是伽利略在比萨斜塔进行的自由落体实验,即引力质量和惯性质量的等效性。但是为了充分阐释其物理含义,人们等待了三百年之久,也就是等待到广义相对论的发现。所以若不是爱因斯坦,再等待五十年是很有可能的。   我们在浏览爱因斯坦文集第六卷时,就可以看到他所进行的多次不成功尝试,这是人类理智的蹒跚学步。他认为引力场和其他物质场不同,它是以时空的曲率来体现的,物质使时空弯曲,而时空又是物质的载体,脱离物质的时空曲率即是引力波。所谓广义相对论原理即是,物理定律对任何坐标变换都采用相同的形式,而狭义相对论原理是,物理定律只对任何洛伦兹线性变换都采取相同的形式。引力场由所谓的爱因斯坦方程所制约。它是非线性的,有别于以往所有的场方程。所以物质的运动方程被爱因斯坦方程所隐含。引力场方程是二阶的,以时空为自变量,以度规为因变量的带有椭圆型约束的双曲型偏微分方程。其复杂而美妙对任何曾与之打交道的人都留下深刻的印象。在广义相对论的框架内,爱因斯坦进行了引力红移、水星近日点进动以及光线受引力场折射等计算。而他关于光线在太阳引力场附近受到折射的预言在1919年西非日食的观测中得到证实。他的方程如此难解,以至于他在这些计算中,使用的只是一个近似解,所依赖的主要是他的无比的物理洞察力。而球面对称的准确解——史瓦兹解是在此之后才找到的。   他首次用引力场方程来研究宇宙的整体,开创了理论宇宙学的新学科。可惜由于稳态宇宙的观念是如此根深蒂固,使他拒绝了演化宇宙的解,他还为此在场方程中引进一项宇宙常数,从而人类失去了一项重大的科学预言机遇!1929年哈勃观察到星系光谱红移和距离的线性关系,即所谓哈勃定律。人们把红移归结于宇宙的膨胀,并断言宇宙是由于一百多亿年前的一次大爆炸产生的,这就是所谓的标准的大爆炸宇宙学。   他的场方程还得出紧致物体的引力坍缩的解,即史瓦兹解及其推广,这就是描述黑洞的解。但是爱因斯坦认为物质不可能如此紧致,并著文认为这是荒谬的。但是历史证明,黑洞是天体物理中最重要的物体,近年天文观测,使人们普遍认为在星系中心存在巨大质量的黑洞。事实上,宇宙本身和黑洞正是理论物理学最美妙的研究对象。如果撇开宇宙和黑洞,则物理学的光彩将会大为逊色!   爱因斯坦在布朗运动、作为激光机制的基础的辐射理论、玻色——爱因斯坦统计及其凝聚现象都有关键性贡献。他和玻尔有关量子力学的论争是科学史上旷日持久的影响深远的事件。他坚信自然界中的一切相互作用都可统一成一种作用。统一场论是科学皇冠上的钻石!当代的超对称、超引力、超弦理论都是统一场论路途上的种种尝试。   相对论在近四十年来有了长足的进展,尤其经典相对论已成为成熟的学科。相对论在近世的进步,主要归功于彭罗斯和霍金。彭罗斯利用全局分析以及拓扑工具,赋予高深的相对论计算以鲜明的物理意义,以他命名的彭罗斯图对于时空犹如费因曼图对于粒子物理那样重要。霍金和彭罗斯一道证明了奇胜定理。他单独证明了黑洞面积定理以及黑洞视界面积代表黑洞的熵。他的黑洞蒸发理论把量子场论、广义相对论以及统计物理统一起来,其理论的瑰丽,犹如一道佛光,令人目眩神摇。而他的量子宇宙学的无边界假说,是研究宇宙创生的科学理论。   笔者认为,引导爱因斯坦以及后代科学家生涯的最大动机,不是财富,不是名声,也不是别的更高尚的目标(尤其是财富和名声可以凭借其他更快捷的手段获取)。他们的主要动机是科学的好奇心和科学的美学。我们可以在历史中找到许多例子,有多少人恰恰是为了科学牺牲世俗中的健康、财富和名声。但是普天之下人们所拥有的一切除了科学发现和艺术创造的喜悦之外都是可能被剥夺的。人类对好奇和美的不懈追求将把人类带向更美妙的未来! 爱因斯坦年表   1879年 3月14日上午11时30分,爱因斯坦出生在德国乌尔姆市班霍夫街1 35号。父母都是犹太人。父名赫尔曼·爱因斯坦,母亲波林·科克。   1880年 爱因斯坦一家迁居慕尼黑。父同其弟雅各布合办一电器设备小工厂。   1881年 11月18日,爱因斯坦的妹妹玛雅出世。1884年 爱因斯坦对袖珍罗盘着迷。进天主教小学读书。   1885年 爱因斯坦开始学小提琴。   1886年 爱因斯坦在慕尼黑公立学校读书。为了遵守宗教指示的法定要求,在家里学习犹太教的教规。   1888年 爱因斯坦入路易波尔德高级中学学习。在学校继续受宗教教育,直到准备接受受戒仪式。弗里德曼是指导老师。1889年 在医科大学生塔尔梅引导下,读通俗科学读物和哲学著作。   1890年 爱因斯坦的宗教时间,持续约1年。1891年 自学欧几里德几何,感到狂热的喜爱。开始自学高等数学。   1892年 开始读康德著作。   1894年 全家迁往意大利米兰。   1895年 自学完微积分。中学没毕业就到意大利与家人团聚。放弃德国国籍。   投考苏黎世瑞士联邦工业大学,未录取。   10月转学到瑞士阿劳州立中学。   写了第一篇科学论文。   1896年 获阿劳中学毕业证书。   10月进苏黎世联邦工业大学师范系学习物理。1897年 在苏黎世结识贝索,与其终身友谊从此开始。   1899年 10月19日正式申请瑞士公民权。   1900年 8月毕业于苏黎世联邦工业大学。12月完成论文《由毛细管现象得到的推论》,次年发表在莱比锡《物理学杂志》上。   1901年 3月21日取得瑞士国籍。   3月去米兰找工作,无结果。   5月回瑞士,任温特图尔中学技术学校代课教师。10月到夏夫豪森任家庭教师。3个月后又失业。12月申请去伯尔尼瑞士专利局工作。   5—7月完成电势差的热力学理论的论文。   1902年 2月到伯尔尼等待工作。   和索洛文、哈比希特创建“奥林匹亚科学院”。   6月受聘为伯尔尼瑞士专利局的试用三级技术员。6月完成第三篇论文《关于热平衡和热力学第二定律的运动论》,提出热力学的统计理论。   10月父病故。   1903年 1月与米列娃结婚。   1904年 5月长子汉斯出生。   9月由专利局的试用人员转为正式三级技术员。1905年 3月发展量子论,提出光量子假说,解决了光电效应问题。4月向苏黎世大学提出论文《分子大小的新测定法》,取得博士学位。   5月完成论文《论动体的电动力学》,独立而完整地提出狭义相对性原理,开创物理学的新纪元。   9月提出质能相当关系。   1906年 4月晋升为专利局二级技术员。   11月完成固体比热的论文,这是关于固体的量子论的第一篇论文。   1907年 开始研究引力场理论,在论文《关于对性原理和由此得出的结论》中提出均匀引力场同均匀加速度的等效原理。6月申请兼任伯尔尼大学的编外讲师。   1908年 10月兼任伯尔尼大学编外讲师。1909年 3月和10月完成两篇论文,每一篇都含有对于黑体辐射论的推测。   7月接受日内瓦大学名誉博士。   9月参加萨尔斯堡德国自然科学家协会第81次大会,会见普朗克等,作了《我们关于辐射的本质和结论的观点的发展》报告。   10月离开伯尔尼专利局,任苏黎世大学理论物理学副教授。   1910年 7月次子爱德华出生。   10月完成关于临界乳光的论文。   1911年 2月应洛伦兹邀请访问莱顿。   3月任布拉格德国大学理论物理学教授。   10月去布鲁塞尔出席第一次索尔维会议。   1912年 2月埃伦费斯特来访,两人由此结成莫逆之交。10月回瑞士,任母校苏黎世联邦工业大学理论物理学教授。   提出光化当量定律。   开始同格罗斯曼合作探索广义相对论。   1913年 7月普朗克和能斯特来访,聘请他为柏林威廉皇家物理研究所所长兼柏林大学教授。   12月7日在柏林接受院士职务。   发表同格罗斯曼合著的论文《广义相对论纲要和引力理论》,提出引力的度规场理论。   1914年 4月6日,从苏黎世迁居到柏林。   7月2日在普鲁士科学院作就职演说。   10月反对德国文化界名流为战争辩护的宣言《告文明世界书》,在同它针锋相对的《告欧洲人书》上签名。   11月参加组织反战团体“新祖国同盟”。   1915年 同德哈斯共同发现转动磁性效应。   3月写信给罗曼·罗兰,支持他的反战活动。   6—7月在阿廷根作了6次关于广义相对论的学术报告。11月提出广义相对论引力方程的完整形式,并且成功地解释了水星近日点运动。   1916年 3月完成总结性论文《广义相对论的基础》。   3月发表悼念马赫的文章。   5月提出宇宙空间有限无界的假说。   8月完成《关于辐射的量子理论》,总结量子论的发展,提出受激辐射理论。   首次进行关于引力波的探讨。   写作《狭义和广义相对论浅说》。   1917年 2月,著述第一篇关于宇宙学的论文,引入宇宙项。接连患肝病、胃溃疡、黄疸病和一般虚弱症,受堂姐艾尔莎照顾。   1918年 2月,爱因斯坦发表关于引力波的第二篇论文,包括四级公式。   1919年 1—3月在苏黎世讲学。   2月同米列娃离婚。   6月与艾尔莎结婚。   9月获悉英国天文学家观察日食的结果,11月6日消息公布后,全世界为之轰动。由此,爱因斯坦的理论被视为“人类思想史中最伟大的成就之一”。   12月,接受德国唯一的名誉学位:罗斯托克大学的医学博士学位。   1920年 3月母亲患癌症去世。   夏访问斯堪的那维亚。   8—9月德国出现反相对论的逆流,爱因斯坦遭到恶毒攻击,他起而公开应战。   10月接受兼任莱顿大学特邀教授名义,发表《以太和相对论》的报告。   1921年 1月访问布拉格和维也纳。   1月27日在普鲁士科学院作《几何学和经验》的报告。   2月去阿姆斯特丹参加国际工联会议。   4月2日—5月30日,为了给耶路撒冷的希伯莱大学的创建筹集资金,同魏茨曼一起首次访问美国。在哥伦比亚大学获巴纳德勋章。在白宫受哈丁总统接见。在访问芝加哥、波士顿和普林斯顿期间,就相对论进行了4次讲学。   6月访问英国,拜谒了牛顿墓地。   1922年 1月完成关于统一场论的第一篇论文。3—4月访问法国,努力促使法德关系正常化。发表批判马赫哲学的谈话。   5月参加国际联盟知识界合作委员会。   7月受到被谋杀的威胁,暂离柏林。   10月8日,爱因斯坦和艾尔莎在马赛乘轮船赴日本。沿途访问科伦坡、新加坡、香港和上海。   11月9日,在去日本途中,爱因斯坦被授予1921年诺贝尔物理学奖金。   11月17日—12月29日,访问日本。   1923年 2月2日,从日本返回途中,到巴勒斯坦访问,逗留12天。   2月8日,成为特拉维夫市的第一个名誉公民。   从巴勒斯坦返回德国途中,访问了西班牙。   3月,爱因斯坦对国联的能力大失所望,向国联提出辞职。6—7月,帮助创建“新俄朋友协会”,并成为其执行委员会委员。   7月,到哥德堡接受1921年度诺贝尔奖金。并讲演相对论,作为对得到诺贝尔奖金的感谢。   发现了康普顿效应,解决了光子概念中长期存在的矛盾。12月,第一次推测量子效应可能来自过度约束的广义相对论场方程。   1924年 加入柏林的犹太组织,并成为缴纳会费的会员。   6月,重新考虑加入国联。   12月,取得最后一个重大发现,从统计涨落的分析中得出一个波和物质缔合的独立的论证。此时,还发现了波色—爱因斯坦凝聚。   1925年 受聘为德苏合作团体“东方文化技术协会”理事。   5—6月,去南美洲访问。   与甘地和其他人一道,在拒绝服兵役的声明上签字。   接受科普列奖章。   为希伯莱大学的董事会工作。   发表《非欧几里德几何和物理学》。   1926年 春,同海森伯讨论关于量子力学的哲学问题。   接受“皇家天文学家”的金质奖章。   接受为苏联科学院院士。   1927年 2月在巴比塞起草的反法西斯宣言上签名。   参加国际反帝大同盟,被选为名誉主席。   10月参加第五届布鲁塞尔索尔维物理讨论会,开始同哥本哈根学派就量子力学的解释问题进行激烈论战。   发表《牛顿力学及其对理论物理学发展的影响》。1928年 1月被选为“德国人权同盟”(前身为德国“新祖国同盟”)理事。   春,由于身体过度劳累,健康欠佳,到瑞士达伏斯疗养,并为疗养青年讲学。发表《物理学的基本概念至其最近的变化》。   4月海伦·杜卡斯开始到爱因斯坦家担任终生的私人秘书。   1929年 2月发表《统一场论》。   3月,50岁生日,躲到郊外以避免生日庆祝会。第一次访问比利时皇室,与伊丽莎白女皇结下友谊,直到去世之前一直与比利时女皇通信。   6月28日获普朗克奖章。   9月以后同法国数学家阿达马进行关于战争与和平问题的争论,坚持无条件地反对一切战争。   1930年 不满国际联盟在改善国际关系上的无所作为,提出辞职。5月,在“国际妇女和平与自由同盟”的世界裁军声明上签字。   7月同泰戈尔争论真理的客观性问题。   12月11日—1931年3月4日,爱因斯坦第二次到美国访问,主要在加利福尼亚州理工学院讲学。   12月13日,沃克市长向爱因斯坦赠送纽约市的金钥匙。   12月19日—20日,访问古巴。   发表《我的世界观》、《宗教和科学》等文章。   1931年 3月从美国回柏林。   5月访问英国,在牛津讲学。   11月号召各国对日本经济封锁,以制止其对中国的军事侵略。   12月再度去加利福尼亚讲学。   为参加1932年国际裁军会议,特地发表了一系列文章和演讲。   发表《麦克斯韦对物理实在观念发展的影响》。1932年 2月,对于德国和平主义者奥西茨基被定为叛国罪,在帕莎第纳提出抗议。   3月从美国回柏林。   5月去剑桥和牛津讲学,后赶到日内瓦列席裁军会议,感到极端失望。   6月同墨菲作关于因果性问题的谈话。   7月同弗洛伊德通信,讨论战争的心理问题。   号召德国人民起来保卫魏玛共和国,全力反对法西斯。12月10日,和妻子离开德国去美国。原来打算访问美国,然而,他们从此再也没有踏上德国的领土。   1933年 1月30日,纳粹上台。   3月10日,在帕莎第纳发表不回德国的声明,次日启程回欧洲。   3月20日,纳粹搜查他的房屋,他发表抗议。后他在德国的财产被没收,著作被焚。   3月28日从美国到达比利时,避居海边农村。   4月21日宣布辞去普鲁士科学院职务。   5月26日给劳厄的信中指出科学家对重大政治问题不应当默不作声。   6月到牛津讲学后即回比利时。   7月改变绝对和平主义态度,号召各国青年武装起来准备同纳粹德国作殊死斗争。   9月初纳粹以2万马克悬赏杀死他。   9月9日,渡海前往英国,永远离开欧洲。   10月3日在伦敦发表演讲《文明和科学》。   10月10日离开英国,10月17到达美国,定居于普林斯顿,应聘为高等学术研究院教授。   1934年 文集《我的世界观》由其继女婿鲁道夫·凯泽尔编辑出版。1935年  5月到百慕大作短期旅行。在百慕大正式申请永远在美国居住。这也是他最后一次离开美国。   获富兰克林奖章。   同波多耳斯基和罗森合作,发表向哥本哈根学派挑战的论文,宣称量子力学对实在的描述是不完备的。   为使诺贝尔奖金(和平奖)赠予关在纳粹集中营中的奥西茨基而奔走。   1936年 开始同英费尔德和霍夫曼合作研究广义相对论的运动问题。   12月20日妻艾尔莎病故。   发表《物理学和实在》、《论教育》。   1937年 3—9月参加由英费尔德执笔的通俗册子《物理学的进化》的编写工作。   3月声援中国“七君子”。   6月同英费尔德和霍夫曼合作完成论文《引力方程和运动问题》,从广义相对论的场方程推导出运动方程。   1938年 同柏格曼合写论文《卡鲁查电学理论的推广》。   9月给五千年后的子孙写信,对资本主义社会现状表示不满。   1939年 8月2日在西拉德推动下,上书罗斯福总统,建议美国抓紧原子能研究,防止德国抢先掌握原子弹。   妹妹玛雅从欧洲来美,在爱因斯坦家长期住下来。1940年 5月15日发表《关于理论物理学基础的考查》。   5月22日致电罗斯福,反对美国的中立政策。   10月1日取得美国国籍。   1941年 发表《科学和宗教》等文章。   1942年 10月在犹太人援苏集会上热烈赞扬苏联各方面的成就。   1943年 5月作为科学顾问参与美国海军部工作。1944年 为支持反法西斯战争,以600万美元拍卖1905年狭义相对论论文手稿。发表对罗素的认识论的评论。   12月同斯特恩、玻尔讨论原子武器和战后和平问题,听从玻尔劝告,暂时保持沉默。   1945年 3月同西拉德讨论原子军备的危险性,写信介绍西拉德去见罗斯福,未果。   4月从高等学术研究院退休(事实上依然继续照常工作)。9月以后连续发表一系列关于原子战争和世界政府的言论。1946年 5月发起组织“原子科学家非常委员会”,担任主席。5月接受黑人林肯大学名誉博士学位。写长篇《自述》,回顾一生在科学上探索的道路。   5月妹妹玛雅因中风而瘫痪,以后每夜念书给她听。   10月,给联合国大会写公开信,敦促建立世界政府。   1947年 继续发表大量关于世界政府的言论。   9月发表公开信,建议把联合国改组为世界政府。1948年 4—6月同天文学家夏普林利合作,全力反对美国准备对苏联进行“预防性战争”。   抗议美国进行普遍军事训练。   发表《量子力学和实在》。   前妻米列娃在苏黎世病故。   12月,作剖腹手术,在腹部主动脉里发现一个大动脉瘤。   1949年 1月13日,爱因斯坦出院。   1月,写《对批评的回答》,对哥本哈根学派在文集《阿尔伯特·爱因斯坦:哲学家— 科学家》中的批判进行反批判。   5月发表《为什么要社会主义》。   11月“原子科学家非常委员会”停止活动。   1950年 2月13日发表电视演讲,反对美国制造氢弹。   4月发表《关于广义引力论》。   文集《晚年集》出版。   3月18日,在遗嘱上签字盖章。内森博士被指名为唯一的遗嘱执行人。遗产由内森博士和杜卡斯共同托管。信件和手稿的最终贮藏所是希伯莱大学。其他条款当中还有:小提琴赠给孙子伯恩哈德·凯撒。   1951年 连续发表文章和信件,指出美国的扩军备战政策是世界和平的严重障碍。   6月妹妹玛雅在长期瘫痪后去世。   9月“原子能科学家非常委员会”解散。   1952年 发表《相对论和空间问题》、《关于一些基本概论的绪论》。11月以色列第1任总统魏斯曼死后,以色列政府请他担任第2任总统,被拒绝。   1953年 4月3日给伯尔尼时代的旧友写《奥林匹亚科学院颂词》,缅怀青年时代的生活。   5月16日给受迫害的教师弗劳恩格拉斯写回信,号召美国知识分子起来坚决抵抗法西斯迫害,引起巨大反响。为经念玻恩退休,发表关于量子力学解释的论文,由此引起两人之间的激烈争论。   发表《〈空间概念〉序》。   1954年 3月,75岁生日,通过“争取公民自由非常委员会”,号召美国人民起来同法西斯势力作斗争。   3月被美国参议员麦卡锡公开斥责为“美国的敌人”。   5月发表声明,抗议对奥本海默的政治迫害。   秋因患溶血性贫血症卧床数日。   11月18日,在《记者》杂志上发表声明,不愿在美国做科学家,而宁愿做一个工匠或小贩。   完成《非对称的相对论性理论》。   1955年 2—4月同罗素通信讨论和平宣言问题,4月11日在宣言上签名。   3月写《自述片断》,回忆青年时代的学习和科学探索的道路。   3月15日挚友贝索逝世。   4月3日同科恩谈论关于科学史等问题。   4月5日驳斥美国法西斯分子给他扣上“颠覆分子”帽子。4月13日在草拟一篇电视讲话稿时发生严重腹痛,后诊断为动脉出血。   4月15日进普林斯顿医院。   4月18日1时25分在医院逝世。当日16时遗体在特伦顿火化。遵照其遗嘱,骨灰被秘密保存,不发讣告,不举行公开葬仪,不做坟墓,不立纪念碑。 <-- -------------------------------------------------------------- 书籍名称:狭义与广义相对论浅说 作者:爱因斯坦 本书籍由网友“he_luke”上传 日期:2010/2/9 20:30:14 书本网 http://www.bookben.cn - 手机访问 m.bookben.cn - TXT电子书免费分享平台 Web2.0小说网站,和好友一起上传、下载、分享TXT全本小说。 所有小说仅供试阅,请于下载后24小时内删除,阅读全本请购买实体书。 -------------------------------------------------------------- --> " 小说下载尽在书本网 www.bookben.cn --- 手机访问: m.bookben.cn 附:【本作品来自互联网,本人不做任何负责】内容版权归作者所有下载后24小时内删除"